Advertisements
Advertisements
प्रश्न
The distribution below gives the weights of 30 students of a class. Find the median weight of the students.
Weight (in kg) | 40−45 | 45−50 | 50−55 | 55−60 | 60−65 | 65−70 | 70−75 |
Number of students | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
उत्तर
The cumulative frequencies with their respective class intervals are as follows
Weight (in kg) | Frequency (fi) | Cumulative frequency |
40 − 45 | 2 | 2 |
45 − 50 | 3 | 2 + 3 = 5 |
50 − 55 | 8 | 5 + 8 = 13 |
55 − 60 | 6 | 13 + 6 = 19 |
60 − 65 | 6 | 19 + 6 = 25 |
65 − 70 | 3 | 25 + 3 = 28 |
70 − 75 | 2 | 28 + 2 = 30 |
Total (n) | 30 |
Cumulative frequency just greater than `N/2 (i.e 30/2 = 15)` is 19, belonging to class interval 55 − 60.
Median class = 55 − 60
Lower limit (l) of median class = 55
Frequency (f) of median class = 6
Cumulative frequency (cf) of median class = 13
Class size (h) = 5
Median = `l + ((N/2 - cf)/f) xx h`
= `55 + ((15-13)/6) xx 5`
= `55 + 10/6`
= 55 + 1.66
= 56.67
Therefore, the weight is 56.67 kg.
APPEARS IN
संबंधित प्रश्न
The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day :
Age (in years) | No. of Patients |
10-20 | 60 |
20-30 | 42 |
30-40 | 55 |
40-50 | 70 |
50-60 | 53 |
60-70 | 20 |
Find the median age of the patients.
For a certain frequency distribution, the value of mean is 20 and mode is 11. Find the value of median.
The following is the distribution of the size of certain farms from a taluka (tehasil):
Size of Farms (in acres) |
Number of Farms |
5 – 15 | 7 |
15 – 25 | 12 |
25 – 35 | 17 |
35 – 45 | 25 |
45 – 55 | 31 |
55 – 65 | 5 |
65 – 75 | 3 |
Find median size of farms.
The table below shows the salaries of 280 persons :
Salary (In thousand Rs) | No. of Persons |
5 – 10 | 49 |
10 – 15 | 133 |
15 – 20 | 63 |
20 – 25 | 15 |
25 – 30 | 6 |
30 – 35 | 7 |
35 – 40 | 4 |
40 – 45 | 2 |
45 – 50 | 1 |
Calculate the median salary of the data.
An incomplete distribution is given as follows:
Variable: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Frequency: | 10 | 20 | ? | 40 | ? | 25 | 15 |
You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.
If the median of the following data is 32.5, find the missing frequencies.
Class interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | Total |
Frequency: | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
The weights (in kg) of 10 students of a class are given below:
21, 28.5, 20.5, 24, 25.5, 22, 27.5, 28, 21 and 24.
Find the median of their weights.
Calculate the missing frequency from the following distribution, it being given that the median of distribution is 24.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 - 50 |
Frequency | 5 | 25 | ? | 18 | 7 |
The following frequency distribution table shows the number of mango trees in a grove and their yield of mangoes, and also the cumulative frequencies. Find the median of the data.
Class (No. of mangoes) |
Frequency (No. of trees) |
Cumulative frequency (less than) |
50-100 | 33 | 33 |
100-150 | 30 | 63 |
150-200 | 90 | 153 |
200-250 | 80 | 233 |
250-300 | 17 | 250 |
In the graphical representation of a frequency distribution, if the distance between mode and mean is ktimes the distance between median and mean, then write the value of k.
If the difference of Mode and Median of a data is 24, then the difference of median and mean is ______.
Find the Median of the following distribution:
x | 3 | 5 | 10 | 12 | 8 | 15 |
f | 2 | 4 | 6 | 10 | 8 | 7 |
Obtain the median for the following frequency distribution:
x : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
f : | 8 | 10 | 11 | 16 | 20 | 25 | 15 | 9 | 6 |
The following are the marks scored by the students in the Summative Assessment exam
Class | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 |
No. of Students | 2 | 7 | 15 | 10 | 11 | 5 |
Calculate the median.
In a hospital, weights of new born babies were recorded, for one month. Data is as shown:
Weight of new born baby (in kg) | 1.4 - 1.8 | 1.8 - 2.2 | 2.2 - 2.6 | 2.6 - 3.0 |
No of babies | 3 | 15 | 6 | 1 |
Then the median weight is?
The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its ______.
Weekly income of 600 families is tabulated below:
Weekly income (in Rs) |
Number of families |
0 – 1000 | 250 |
1000 – 2000 | 190 |
2000 – 3000 | 100 |
3000 – 4000 | 40 |
4000 – 5000 | 15 |
5000 – 6000 | 5 |
Total | 600 |
Compute the median income.
Find the modal and median classes of the following distribution.
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 11 | 22 | 19 | 18 | 7 |
The median of first 10 natural numbers is ______.
The following table shows classification of number of workers and number of hours they work in software company. Prepare less than upper limit type cumulative frequency distribution table:
Number of hours daily | Number of workers |
8 - 10 | 150 |
10 - 12 | 500 |
12 - 14 | 300 |
14 - 16 | 50 |