हिंदी

The following figure shows a triangle ABC in which AD and BE are perpendiculars to BC and AC respectively. Show that: ΔADC ∼ ΔBEC CA × CE = CB × CD ΔABC ~ ΔDEC CD × AB = CA × DE - Mathematics

Advertisements
Advertisements

प्रश्न

The following figure shows a triangle ABC in which AD and BE are perpendiculars to BC and AC respectively. 


Show that:

  1. ΔADC ∼ ΔBEC
  2. CA × CE = CB × CD
  3. ΔABC ~ ΔDEC
  4. CD × AB = CA × DE
योग

उत्तर

i. ∠ADC = ∠BEC = 90°

∠ACD = ∠BCE  ...(Common)

ΔADC ∼ ΔBEC  ...(AA similarity)

ii From part (i),

`(AC)/(BC) = (CD)/(EC)`   ...(1)

`=>` CA × CE = CB × CD

iii. In ΔABC and ΔDEC,

From (1),

`(AC)/(BC) = (CD)/(EC) => (AC)/(CD) = (BC)/(EC)`

∠DCE = ∠BCA  ...(Common)

ΔABC ~ ΔDEC  ...(SAS similarity)

iv. From part (iii),

`(AC)/(DC) = (AB)/(DE)`

`=>` CD × AB = CA × DE

shaalaa.com
Axioms of Similarity of Triangles
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity (With Applications to Maps and Models) - Exercise 15 (E) [पृष्ठ २३१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 15 Similarity (With Applications to Maps and Models)
Exercise 15 (E) | Q 24 | पृष्ठ २३१

संबंधित प्रश्न

Given: RS and PT are altitudes of ΔPQR. Prove that:

  1. ΔPQT ~ ΔQRS,
  2. PQ × QS = RQ × QT.

In ∆ABC, ∠B = 90° and BD ⊥ AC.

  1. If CD = 10 cm and BD = 8 cm; find AD.
  2. If AC = 18 cm and AD = 6 cm; find BD.
  3. If AC = 9 cm and AB = 7 cm; find AD.

In the given figure, P is a point on AB such that AP : PB = 4 : 3. PQ is parallel to AC.

  1. Calculate the ratio PQ : AC, giving reason for your answer.
  2. In triangle ARC, ∠ARC = 90° and in triangle PQS, ∠PSQ = 90°. Given QS = 6 cm, calculate the length of AR.

In the given triangle PQR, LM is parallel to QR and PM : MR = 3 : 4.


Calculate the value of ratio:

  1. `(PL)/(PQ)` and then `(LM)/(QR)`
  2. `"Area of ΔLMN"/"Area of ΔMNR"`
  3. `"Area of ΔLQM"/"Area of ΔLQN"`

In the figure, given below, ABCD is a parallelogram. P is a point on BC such that BP : PC = 1 : 2. DP produced meets AB produces at Q. Given the area of triangle CPQ = 20 cm2.


Calculate:

  1. area of triangle CDP,
  2. area of parallelogram ABCD.

In the given figure, ∠B = ∠E, ∠ACD = ∠BCE, AB = 10.4 cm and DE = 7.8 cm. Find the ratio between areas of the ∆ABC and ∆DEC.


Triangle ABC is an isosceles triangle in which AB = AC = 13 cm and BC = 10 cm. AD is
perpendicular to BC. If CE = 8 cm and EF ⊥ AB, find:

i)`"area of ADC"/"area of FEB"`       ii)`"area of ΔAFEB"/"area of ΔABC"`


The ratio between the altitudes of two similar triangles is 3 : 5; write the ratio between their :

  1. corresponding medians.
  2. perimeters.
  3. areas.

In triangle ABC, AP : PB = 2 : 3. PO is parallel to BC and is extended to Q so that CQ is parallel to BA.


Find:

  1. area ΔAPO : area ΔABC.
  2. area ΔAPO : area ΔCQO.

In the give figure, ABC is a triangle with ∠EDB = ∠ACB. Prove that ΔABC ∼ ΔEBD. If BE = 6 cm, EC = 4 cm, BD = 5 cm and area of ΔBED = 9 cm2. Calculate the: 

  1. length of AB
  2. area of ΔABC


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×