Advertisements
Advertisements
प्रश्न
The friction coefficient between the horizontal surface and each of the block shown in figure is 0.20. The collision between the blocks is perfectly elastic. Find the separation between the two blocks when they come to rest. Take g = 10 m/s2.
उत्तर
Given:
Initial velocity of 2 kg block, v1 = 1.0 m/s
Initial velocity of the 4 kg block, v2 = 0
Let the velocity of 2 kg block, just before the collision be u1.
Using the work-energy theorem on the block of 2 kg mass:
The separation between two blocks, s = 16 cm = 0.16 m
\[\therefore \left( \frac{1}{2} \right)m \times u_1^2 - \left( \frac{1}{2} \right)m \times (1 )^2 = - \mu \times mg \times s \]
\[ \Rightarrow u_1 = \sqrt{(1 )^2 - 2 \times 0 . 20 \times 10 \times 0 . 16}\]
\[ \Rightarrow u_1 = 0 . 6 \text{ m/s}\]
As the collision is perfectly elastic, linear momentum is conserved.
Let v1, v2 be the velocities of 2 kg and 4 kg blocks, just after collision.
Using the law of conservation of linear momentum, we can write:
\[m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2 \]
\[ \Rightarrow 2 \times 0 . 6 + 4 \times 0 = 2 v_1 + 4 v_2 \]
\[ \Rightarrow 2 v_1 + 4 v_2 = 1 . 2 . . . (1)\]
For elastic collision,
Velocity of separation (after collision) = Velocity of approach (before collision)
\[i . e . v_1 - v_2 = + ( u_1 - u_2 )\]
\[ = + (0 . 6 - 0)\]
\[ \Rightarrow v_1 - v_2 = - 0 . 6 . . . (2)\]
\[\text{ Substracting equation (2) from (1), we get: }\]
\[3 v_2 = 1 . 2\]
\[ \Rightarrow v_2 = 0 . 4 \text{ m/s}\]
\[ \therefore v_1 = - 0 . 6 + 0 . 4 = - 0 . 2 \text{ m/s} \]
Let the 2 kg block covers a distance of S1.
∴ Applying work-energy theorem for this block, when it comes to rest:
\[\left( \frac{1}{2} \right) \times 2 \times (0 )^2 + \left( \frac{1}{2} \right) \times 2 \times (0 . 2 )^2 = - 2 \times 0 . 2 \times 10 \times S_1 \]
\[ \Rightarrow S_1 = 1 cm .\]
Let the 4 kg block covers a distance of S2.
Applying work energy principle for this block:
\[\left( \frac{1}{2} \right) \times 4 \times (0 )^2 - \left( \frac{1}{2} \right) \times 4 \times (0 . 4 )^2 = - 4 \times 0 . 2 \times 10 \times S_2 \]
\[ \Rightarrow 2 \times 0 . 4 \times 0 . 4 = 4 \times 0 . 2 \times 10 \times S_2 \]
\[ \Rightarrow S_2 = 4 \text{ cm}\]
Therefore, the distance between the 2 kg and 4 kg block is given as,
S1 + S2 = 1 + 4 = 5 cm
APPEARS IN
संबंधित प्रश्न
If the linear momentum of a particle is known, can you find its kinetic energy? If the kinetic energy of a particle is know can you find its linear momentum?
A van is standing on a frictionless portion of a horizontal road. To start the engine, the vehicle must be set in motion in the forward direction. How can be persons sitting inside the van do it without coming out and pushing from behind?
A nucleus moving with a velocity \[\vec{v}\] emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be v1 and v2 and their masses be m1 and m2.
A block moving in air breaks in two parts and the parts separate
(a) the total momentum must be conserved
(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change
A uranium-238 nucleus, initially at rest, emits an alpha particle with a speed of 1.4 × 107m/s. Calculate the recoil speed of the residual nucleus thorium-234. Assume that the mass of a nucleus is proportional to the mass number.
A man of mass M having a bag of mass m slips from the roof of a tall building of height H and starts falling vertically in the following figure. When at a height h from the ground, the notices that the ground below him is pretty hard, but there is a pond at a horizontal distance x from the line of fall. In order to save himself he throws the bag horizontally (with respect to himself) in the direction opposite to the pond. Calculate the minimum horizontal velocity imparted to the bag so that the man lands in the water. If the man just succeeds to avoid the hard ground, where will the bag land?
In a typical Indian Bugghi (a luxury cart drawn by horses), a wooden plate is fixed on the rear on which one person can sit. A bugghi of mass 200 kg is moving at a speed of 10 km/h. As it overtakes a school boy walking at a speed of 4 km/h, the boy sits on the wooden plate. If the mass of the boy is 25 kg, what will be the plate. If the mass of the boy is 25 kg, what will be the new velocity of the bugghi ?
A 60 kg man skating with a speed of 10 m/s collides with a 40 kg skater at rest and they cling to each other. Find the loss of kinetic energy during the collision.
Consider a head-on collision between two particles of masses m1 and m2. The initial speeds of the particles are u1 and u2 in the same direction. the collision starts at t = 0 and the particles interact for a time interval ∆t. During the collision, the speed of the first particle varies as \[v(t) = u_1 + \frac{t}{∆ t}( v_1 - u_1 )\]
Find the speed of the second particle as a function of time during the collision.
Two friends A and B (each weighing 40 kg) are sitting on a frictionless platform some distance d apart. A rolls a ball of mass 4 kg on the platform towards B which B catches. Then B rolls the ball towards A and A catches it. The ball keeps on moving back and forth between A and B. The ball has a fixed speed of 5 m/s on the platform. (a) Find the speed of A after he catches the ball for the first time. (c) Find the speeds of A and Bafter the all has made 5 round trips and is held by A. (d) How many times can A roll the ball? (e) Where is the centre of mass of the system "A + B + ball" at the end of the nth trip?
In a gamma decay process, the internal energy of a nucleus of mass M decreases, a gamma photon of energy E and linear momentum E/c is emitted and the nucleus recoils. Find the decrease in internal energy.
A bullet of mass 25 g is fired horizontally into a ballistic pendulum of mass 5.0 kg and gets embedded in it. If the centre of the pendulum rises by a distance of 10 cm, find the speed of the bullet.
A bullet of mass 20 g moving horizontally at a speed of 300 m/s is fired into a wooden block of mass 500 g suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of mass of the block rises through a height of 20.0 cm, find the speed of the bullet as it emerges from the block.
Two mass m1 and m2 are connected by a spring of spring constant k and are placed on a frictionless horizontal surface. Initially the spring is stretched through a distance x0 when the system is released from rest. Find the distance moved by the two masses before they again come to rest.
A bullet of mass 10 g moving horizontally at a speed of 50√7 m/s strikes a block of mass 490 g kept on a frictionless track as shown in figure. The bullet remains inside the block and the system proceeds towards the semicircular track of radius 0.2 m. Where will the block strike the horizontal part after leaving the semicircular track?
The blocks shown in figure have equal masses. The surface of A is smooth but that of Bhas a friction coefficient of 0.10 with the floor. Block A is moving at a speed of 10 m/s towards B which is kept at rest. Find the distance travelled by B if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic.
A uniform rod pivoted at its upper end hangs vertically. It is displaced through an angle of 60° and then released. Find the magnitude of the force acting on a particle of mass dm at the tip of the rod when the rod makes an angle of 37° with the vertical.
A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?