Advertisements
Advertisements
प्रश्न
The monthly consumption of electricity (in units) of some families of a locality is given in the following frequency distribution:
Monthly Consumption (in units) | 140 – 160 | 160 – 180 | 180 – 200 | 200 – 220 | 220 – 240 | 240 – 260 | 260 - 280 |
Number of Families | 3 | 8 | 15 | 40 | 50 | 30 | 10 |
Prepare a ‘more than type’ ogive for the given frequency distribution.
उत्तर
The frequency distribution table of more than type is as follows:
Height (in cm) (lower class limit) | Cumulative frequency (cf) |
More than 140 | 3 + 153 = 156 |
More than 160 | 8 + 145 = 153 |
More than 180 | 15 + 130 = 145 |
More than 200 | 40 + 90 = 130 |
More than 220 | 50 + 40 = 90 |
More than 240 | 30 + 10 = 40 |
More than 260 | 10 |
Taking the lower class limits of on x-axis and their respective cumulative frequencies ony-axis, its ogive can be drawn as follows:
APPEARS IN
संबंधित प्रश्न
The following distribution gives the daily income of 50 workers of a factory.
Daily income (in Rs | 100 − 120 | 120 − 140 | 140 − 160 | 160 − 180 | 180 − 200 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.
The following table gives the production yield per hectare of wheat of 100 farms of a village.
Production Yield (kg/ha) | 50 –55 | 55 –60 | 60 –65 | 65- 70 | 70 – 75 | 75 80 |
Number of farms | 2 | 8 | 12 | 24 | 238 | 16 |
Change the distribution to a ‘more than type’ distribution and draw its ogive. Using ogive, find the median of the given data.
What is the lower limit of the modal class of the following frequency distribution?
Age (in years) | 0 - 10 | 10- 20 | 20 -30 | 30 – 40 | 40 –50 | 50 – 60 |
Number of patients | 16 | 13 | 6 | 11 | 27 | 18 |
What is the cumulative frequency of the modal class of the following distribution?
Class | 3 – 6 | 6 – 9 | 9 – 12 | 12 – 15 | 15 – 18 | 18 – 21 | 21 – 24 |
Frequency |
7 | 13 | 10 | 23 | 54 | 21 | 16 |
Write the median class for the following frequency distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 |
Frequency: | 5 | 8 | 7 | 12 | 28 | 20 | 10 | 10 |
The median of a given frequency distribution is found graphically with the help of
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | Total |
Frequency | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.
Class interval: | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 | 80−90 |
Frequency: | 10 | 8 | 12 | 24 | 6 | 25 | 15 |
Consider the following distribution:
Marks obtained | Number of students |
More than or equal to 0 | 63 |
More than or equal to 10 | 58 |
More than or equal to 20 | 55 |
More than or equal to 30 | 51 |
More than or equal to 40 | 48 |
More than or equal to 50 | 42 |
The frequency of the class 30 – 40 is:
Look at the following table below.
Class interval | Classmark |
0 - 5 | A |
5 - 10 | B |
10 - 15 | 12.5 |
15 - 20 | 17.5 |
The value of A and B respectively are?