हिंदी

Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral. - Mathematics

Advertisements
Advertisements

प्रश्न

Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.

योग

उत्तर


Given: Two tangents PQ and PR are drawn from an external point to a circle with centre O.

To Prove: QORP is a cyclic quadrilateral.

Proof: Since, PR and PQ are tangents.

So, OR ⊥ PR and OQ ⊥ PQ   ...[Since, if we drawn a line from centre of a circle to its tangent line. Then, the line always perpendicular to the tangent line]

∴ ∠ORP = ∠OQP = 90°

Hence, ∠ORP + ∠OQP = 180°

So, QOPR is cyclic quadrilateral.   ...[If sum of opposite angles is quadrilateral in 180°, then the quadrilateral is cyclic]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Circles - Exercise 9.3 [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 9 Circles
Exercise 9.3 | Q 2 | पृष्ठ १०७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×