Advertisements
Advertisements
प्रश्न
A chord of a circle of radius 14 cm subtends an angle of 120° at the centre. Find the area of the corresponding minor segment of the circle. `[User pi22/7 and sqrt3=1.73]`
उत्तर
Let O be the centre of the circle and AB be the chord that subtends an angle of 120° at the centre.
Here, OM ⊥ AB.
Radius of the circle, r = 14 cm
Area of the minor segment = Area of sector OAB − area of ΔAOB
`text{Area of sector OAB}=O/ /360^@ xx pi r^2`
`=120^@/360^@xx22/7xx(14 cm)^2`
`=1/3xx22/7xx196 cm^2`
`=616/3 cm^2`
Now ,OM ⊥ AB.
`∴AM =MB =1/2AB` [Perpendicular from the centre to the bisects the chord]
`rArr AB =2AM `
⇒ AB = 2AM
In ΔOAM and ΔOBM:
OA = OB [Radii of the same circle]
OM = OM [Common]
∠OMA = ∠OMB [Each 90°]
∴ ΔOAM ≅ ΔOBM [RHS congruence criterion]
⇒ ∠AOM = ∠BOM [C.P.C.T]
`∴∠AOM =∠BOM= 120^@/2=60^@`
In ΔAOD:
`rArr sqrt3/2=(AM)/(OA), cos 60^@=(OM)/(OA)`
`rArr sqrt3/2=(AM)/(14 cm),1/2 = (OM)/(14cm)`
`∴ AB=2AM=14sqrt3cm`
`\text{Area} (Δ AOB)=1/2xxABxxOM=1/2xx14sqrt3xx7cm^2=49sqrt3cm^2`
`\text{Area of minor segment}=616/3 cm^2 -49 sqrt3 cm^2`
`=205.33cm^2-49xx1.73cm^2`
`=205.33cm^2-84.77 cm^2`
`=120.56 cm ^2`
Thus, the area of the minor segment is 120.56 cm2.
APPEARS IN
संबंधित प्रश्न
In fig.. O is the center of the circle and BCD is tangent to it at C. Prove that ∠BAC +
∠ACD = 90°
true or false
Sector is the region between the chord and its corresponding arc.
In Fig 2, a circle touches the side DF of ΔEDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of ΔEDF (in cm) is:
In the given figure, PO \[\perp\] QO. The tangents to the circle at P and Q intersect at a point T. Prove that PQ and OTare right bisector of each other.
A line segment with its end points on the circle is called a ______________
Twice the radius is ________________
If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, then ______
If a chord AB subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60°.
In figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find the ∠RQS.
[Hint: Draw a line through Q and perpendicular to QP.]
AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.
Write answers of the following questions:
- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.