рдорд░рд╛рдареА

A Point P is 26 Cm Away from O of Circle and the Length Pt of the Tangent Drawn from P to the Circle is 10 Cm. Find the Radius of the Circle. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

A point P is 26 cm away from O of circle and the length PT of the tangent drawn from P to the circle is 10 cm. Find the radius of the circle.

рдЙрддреНрддрд░

Given OP = 26 cm

PT = length of tangent = 10cm

radius = OT = ?

At point of contact, radius and tangent are perpendicular ∠OTP = 90°, ΔOTP is right
angled triangle.

By Pythagoras theorem, ЁЭСВЁЭСГ2 = ЁЭСВЁЭСЗ2 + ЁЭСГЁЭСЗ2

262 = ЁЭСВЁЭСЗ2 + 102

ЁЭСВЁЭСЗЁЭСШ =` (sqrt(676 − 100))`ЁЭСШ

ЁЭСВЁЭСЗ = `sqrt(576)`

= 24 cm

OT = length of tangent = 24 cm

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Circles - Exercise 8.2 [рдкреГрд╖реНрда рейрей]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдкрд╛рда 8 Circles
Exercise 8.2 | Q 3 | рдкреГрд╖реНрда рейрей

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Two circles touch each other externally at P. AB is a common tangent to the circles touching them at A and B. The value of ∠ L APB is

(A) 30°

(B) 45°

(C) 60°

(D) 90°


Points A(–1, y) and B(5, 7) lie on a circle with centre O(2, –3y). Find the values of y. Hence find the radius of the circle.


If ΔABC is isosceles with AB = AC and C (0, 2) is the in circle of the ΔABC touching BC at L, prove that L, bisects BC.


In the given figure, an isosceles triangle ABC, with AB = AC, circumscribes a circle. Prove that point of contact P bisects the base BC.


In the given figure, O is the centre of the circle and TP is the tangent to the circle from an external point T. If ∠PBT = 30° , prove that BA : AT = 2 : 1.

 


If \[d_1 , d_2 ( d_2 > d_1 )\] be the diameters of two concentric circle s and c be the length of a chord of a circle which is tangent to the other circle , prove that\[{d_2}^2 = c^2 + {d_1}^2\].


From an external point P , tangents PA PB are drawn to a circle with centre O   . If  \[\angle PAB = {50}^o\] , then find  \[\angle AOB\]


Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
15 cm    

If ABC is an equilateral triangle inscribed in a circle and P be any point on the minor arc BC which does not coincide with B or C, prove that PA is angle bisector of ∠BPC.


From the figure, identify the centre of the circle.

 


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×