рдорд░рд╛рдареА

If from Any Point on the Common Chord of Two Intersecting Circles, Tangents Be Drawn to Circles, Prove that They Are Equal. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If from any point on the common chord of two intersecting circles, tangents be drawn to circles, prove that they are equal.

рдЙрддреНрддрд░

Let the two circles intersect at points X and Y.

XY is the common chord.

Suppose ‘A’ is a point on the common chord and AM and AN be the tangents drawn A to the circle

We need to show that AM = AN.

In order to prove the above relation, following property will be used.

“Let PT be a tangent to the circle from an external point P and a secant to the circle through

P intersects the circle at points A and B, then ЁЭСГЁЭСЗ2 = ЁЭСГЁЭР┤ × ЁЭСГЁЭР╡"

Now AM is the tangent and AXY is a secant ∴ ЁЭР┤ЁЭСА2 = ЁЭР┤ЁЭСЛ × ЁЭР┤ЁЭСМ … . . (ЁЭСЦ)

AN is a tangent and AXY is a secant ∴ ЁЭР┤ЁЭСБ2 = ЁЭР┤ЁЭСЛ × ЁЭР┤ЁЭСМ … . . (ЁЭСЦЁЭСЦ)

From (i) & (ii), we have ЁЭР┤ЁЭСА2 = ЁЭР┤ЁЭСБ2

∴ AM = AN

 

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Circles - Exercise 8.2 [рдкреГрд╖реНрда рейрей]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 10
рдкрд╛рда 8 Circles
Exercise 8.2 | Q 4 | рдкреГрд╖реНрда рейрей
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×