मराठी

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

बेरीज

उत्तर

Let us join AC and BD.

In ΔABC,

P and Q are the mid-points of AB and BC respectively.

∴ PQ || AC and PQ = `1/2 AC`    ...(Mid-point theorem)   ...(1)

Similarly, in ΔADC,

SR || AC and SR = `1/2 AC`        ...(Mid-point theorem)    ...(2)

Clearly, PQ || SR and PQ = SR

Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.

∴ PS || QR and PS = QR       ...(Opposite sides of the parallelogram)   ...(3)

In ΔBCD, Q and R are the mid-points of side BC and CD respectively.

∴ QR || BD and QR = `1/2 BD`    ...(Mid-point theorem)   ...(4)

However, the diagonals of a rectangle are equal.

∴ AC = BD        …(5)

By using equation (1), (2), (3), (4), and (5), we obtain

PQ = QR = SR = PS

Therefore, PQRS is a rhombus.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Quadrilaterals - Exercise 8.2 [पृष्ठ १५०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 8 Quadrilaterals
Exercise 8.2 | Q 3 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let Abc Be an Isosceles Triangle in Which Ab = Ac. If D, E, F Be the Mid-points of the Sides Bc, Ca and a B Respectively, Show that the Segment Ad and Ef Bisect Each Other at Right Angles.


Fill in the blank to make the following statement correct:

The triangle formed by joining the mid-points of the sides of a right triangle is            


D, E, and F are the mid-points of the sides AB, BC, and CA respectively of ΔABC. AE meets DF at O. P and Q are the mid-points of OB and OC respectively. Prove that DPQF is a parallelogram.


In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR


Use the following figure to find:
(i) BC, if AB = 7.2 cm.
(ii) GE, if FE = 4 cm.
(iii) AE, if BD = 4.1 cm
(iv) DF, if CG = 11 cm.


If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm


D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.


The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ______.


The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×