मराठी

Given: RS and PT are altitudes of ΔPQR. Prove that: ΔPQT ~ ΔQRS, PQ × QS = RQ × QT. - Mathematics

Advertisements
Advertisements

प्रश्न

Given: RS and PT are altitudes of ΔPQR. Prove that:

  1. ΔPQT ~ ΔQRS,
  2. PQ × QS = RQ × QT.
बेरीज

उत्तर


i.
In ∆PQT and ∆QRS,

∠PTQ = ∠RSQ = 90° ...(Given)

∠PQT = ∠RQS  ...(Common)

∆PQT ~ ∆RQS     ...(By AA similarity)

ii.

Since, triangle PQT and RQS are similar

∴ `(PQ)/(RQ) = (QT)/(QS)`

`=>` PQ × QS = RQ × QT

shaalaa.com
Axioms of Similarity of Triangles
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Similarity (With Applications to Maps and Models) - Exercise 15 (A) [पृष्ठ २१४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 15 Similarity (With Applications to Maps and Models)
Exercise 15 (A) | Q 15 | पृष्ठ २१४

संबंधित प्रश्‍न

In ∆ABC, right – angled at C, CD ⊥ AB.
Prove:
`"CD"^2 = "AD"xx "DB"`


In the right-angled triangle QPR, PM is an altitude.


Given that QR = 8 cm and MQ = 3.5 cm, calculate the value of PR.


In the given figure, AX : XB = 3 : 5


Find:

  1. the length of BC, if the length of XY is 18 cm.
  2. the ratio between the areas of trapezium XBCY and triangle ABC.

In the given triangle PQR, LM is parallel to QR and PM : MR = 3 : 4.


Calculate the value of ratio:

  1. `(PL)/(PQ)` and then `(LM)/(QR)`
  2. `"Area of ΔLMN"/"Area of ΔMNR"`
  3. `"Area of ΔLQM"/"Area of ΔLQN"`

In the given figure, ∠B = ∠E, ∠ACD = ∠BCE, AB = 10.4 cm and DE = 7.8 cm. Find the ratio between areas of the ∆ABC and ∆DEC.


The ratio between the areas of two similar triangles is 16 : 25. State the ratio between their :

  1. perimeters.
  2. corresponding altitudes.
  3. corresponding medians.

In a triangle PQR, L and M are two points on the base QR, such that ∠LPQ = ∠QRP and ∠RPM = ∠RQP. Prove that:

  1. ΔPQL ∼ ΔRPM
  2. QL × RM = PL × PM
  3. PQ2 = QR × QL


Two isosceles triangles have equal vertical angles. Show that the triangles are similar. If the ratio between the areas of these two triangles is 16 : 25, find the ratio between their corresponding altitudes.


The following figure shows a triangle ABC in which AD and BE are perpendiculars to BC and AC respectively. 


Show that:

  1. ΔADC ∼ ΔBEC
  2. CA × CE = CB × CD
  3. ΔABC ~ ΔDEC
  4. CD × AB = CA × DE

In fig. ABCD is a trapezium in which AB | | DC and AB = 2DC. Determine the ratio between the areas of ΔAOB and ΔCOD.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×