Advertisements
Advertisements
प्रश्न
If an isosceles triangle ABC, in which AB = AC = 6 cm, is inscribed in a circle of radius 9 cm, find the area of the triangle.
उत्तर
Join OB, OC and OA.
In ∆ABO and ∆ACO,
AB = AC ...[Given]
BO = CO ...[Radii of same circle]
AO = AO ...[Common side]
∴ ∆ABO ≅ ∆ACO ...[By SSS congruence criterion]
⇒ ∠1 = ∠2 ...[CPCT]
Now, In ∆ABM and ∆ACM,
AB = AC ...[Given]
∠1 = ∠2 ...[Proved above]
AM = AM ...[Common side]
∴ ∆AMB ≅ ∆AMC ...[By SAS congruence criterion]
⇒ ∠AMB = ∠AMC ...[CPCT]
Also, ∠AMB + ∠AMC = 180° ...[Linear pair]
⇒ ∠AMB = 90°
We know that a perpendicular from the centre of circle bisects the chord.
So, OA is a perpendicular bisector of BC.
Let AM = x, then OM = 9 – x ...[∵ OA = radius = 9 cm]
In right angle ∆AMC,
AC2 = AM2 + MC2 ...[By Pythagoras theorem]
⇒ MC2 = 62 – x2 …(i)
In right angle ∆OMC,
OC2 = OM2 + MC2 ...[By Pythagoras theorem]
⇒ MC2 = 92 – (9 – x)2
From equation (i) and (ii),
62 – x2 = 92 – (9 – x)2
⇒ 36 – x2 = 81 – (81 + x2 – 18x)
⇒ 36 = 18x
⇒ x = 2
∴ AM = 2 cm
From equation (ii),
MC2 = 92 – (9 – 2)2
⇒ MC2 = 81 – 49 = 32
⇒ MC = `4sqrt(2)` cm
∴ BC = 2 MC = `8sqrt(2)` cm
∴ Area of ∆ABC = `1/2` × Base × Height
= `1/2 xx "BC" xx "AM"`
= `1/2 xx 8sqrt(2) xx 2`
= `8sqrt(2) "cm"^2`
Hence, the required area of ∆ABC is `8sqrt(2) "cm"^2`.
APPEARS IN
संबंधित प्रश्न
If from any point on the common chord of two intersecting circles, tangents be drawn to circles, prove that they are equal.
O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?
Find the length of the chord of a circle in the following when:
Radius is 1. 7cm and the distance from the centre is 1.5 cm
In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –
(1) m(arc PR)
(2) m(arc QS)
(3) m(arc QSR)
Mark two points A and B ,4cm a part, Draw a circle passing through B and with A as a center
Construct a triangle XYZ in which XY = YZ= 4.5 cm and ZX = 5.4 cm. Draw the circumcircle of the triangle and measure its circumradius.
In the figure, O is the center of the circle. Line AQ is a tangent. If OP = 3, m(arc PM) = 120°, then find the length of AP.
Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.
In the given figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is ______
A point A is 26 cm away from the centre of a circle and the length of the tangent drawn from A to the circle is 24 cm. Find the radius of the circle.