Advertisements
Advertisements
प्रश्न
In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:
4(BL2 + CM2) = 5 BC2
उत्तर
Given: Δ ABC right angled at A, i.e., A = 90, where BL and CM are the medians.
To Prove: 4(BL2 + CM2) = 5BC2
Proof:
Since BL is the median,
AL = CL = `1/2` AC ...(1)
Similarly, CM is the median
AM = MB = `1/2`AB ...(2)
∴ by Pythagoras theorem,
(Hypotenuse)2 = (Height)2 + (Base)2 ...(3)
In ΔBAC,
(BC)2 = (AB)2 + (AC)2 ...(4)
∠BAC = 90°
In ΔBAL,
(BL)2 = AB2 + AL2 ...(From 1)
BL2 = AB2 + `(("AC")/2)^2`
BL2 = AB2 + `("AC"^2/4)`
Multiply both sides by 4,
4BL2 = 4AB2 + AC2 ...(5)
In ΔMAC,
CM2 = AM2 + AC2 ...(From 2)
CM2 = `(("AB")/2)^2` + AC2
CM2 = `("AB")^2/4` + AC2
Multiply both sides by 4,
4CM2 = AB2 + 4AC2 ...(6)
Adding 5 and 6,
4BL2 + 4CM2 = (4AB2 + AC2) + (AB2 + 4AC2)
4(BL2 + CM2) = 5AB2 + 5AC2
∴ 4(BL2 + CM2) = 5BC2
Hence, proved.
APPEARS IN
संबंधित प्रश्न
If ABC is an equilateral triangle of side a, prove that its altitude = ` \frac { \sqrt { 3 } }{ 2 } a`
In the following figure, O is a point in the interior of a triangle ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that
(i) OA2 + OB2 + OC2 − OD2 − OE2 − OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.
Identify, with reason, if the following is a Pythagorean triplet.
(11, 60, 61)
In ΔABC, Find the sides of the triangle, if:
- AB = ( x - 3 ) cm, BC = ( x + 4 ) cm and AC = ( x + 6 ) cm
- AB = x cm, BC = ( 4x + 4 ) cm and AC = ( 4x + 5) cm
In the following figure, OP, OQ, and OR are drawn perpendiculars to the sides BC, CA and AB respectively of triangle ABC.
Prove that: AR2 + BP2 + CQ2 = AQ2 + CP2 + BR2
In Fig. 3, ∠ACB = 90° and CD ⊥ AB, prove that CD2 = BD x AD.
In the given figure, BL and CM are medians of a ∆ABC right-angled at A. Prove that 4 (BL2 + CM2) = 5 BC2.
The sides of a certain triangle is given below. Find, which of them is right-triangle
16 cm, 20 cm, and 12 cm
Find the Pythagorean triplet from among the following set of numbers.
2, 4, 5
The sides of the triangle are given below. Find out which one is the right-angled triangle?
40, 20, 30
A ladder 15m long reaches a window which is 9m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to other side of the street to reach a window 12m high. Find the width of the street.
In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD2 = 7 AB2.
AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD2 = 3AB2.
In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9AQ2 = 9AC2 + 4BC2
A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.
In a quadrilateral ABCD, ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2
[Hint: Produce AB and DC to meet at E.]
In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.
Points A and B are on the opposite edges of a pond as shown in figure. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.
The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its top reach?