मराठी

In the Following Diagram, Abcd is a Square and Apb is an Equilateral Triangle. (I) Prove That: δApd ≅ δBpc (Ii) Find the Angles of δDpc. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following diagram, ABCD is a square and APB is an equilateral triangle.

(i) Prove that: ΔAPD ≅ ΔBPC
(ii) Find the angles of ΔDPC.

बेरीज

उत्तर

Given: ABCD is a Square and ΔAPB is an equilateral triangle.

(i) Proof: In ΔAPB,
AP = PB = AB            ...[ APB is an equilateral triangle ]
Also, we have,
∠PBA = ∠PAB = ∠APB = 60°                         ...(1)
Since ABCD is a square, we have
∠A =∠ B = ∠C = ∠D = 90°                           ...(2)
Since ∠DAP = ∠A + ∠PAB                            ..(3)
⇒ ∠DAP = 90° + 60°  
⇒ ∠DAP = 150°     ...[ from (1) and (2) ]        ...(4)

Similarly ∠CBP = ∠B + ∠PBA
⇒ ∠CBP = 90° + 60° 
⇒ ∠CBP = 150°       ...[ from (1) and (2) ] ...(5)
⇒ ∠DAP = ∠CBP  ....[ from (1) and (2) ] ...(6)
In ΔAPD and ΔBPC
AD = BC          ...[ Sides of square ABCD ]
∠DAP = ∠CBP  ...[ from(6) ]
AP= BP           [ Sides of equilateral ΔAPB ]
∴ By Side-AAngel-SIde Criterion of Congruence, we have,
ΔAPD ≅ ΔBPC

(ii)
AP = PB = AB  ....[ ΔAPB is an equilateral triangle ] ...(7)
AB = BC = CD = DA  ...[ Sides of square ABCD ] ...(8)
From (7) and (8), we have
AP = DA aand PB = BC                                  ... (9)
In ΔAPD,
AP = DA                    ...[ from (9) ]
∠ADP = ∠APD   ...[ Angel opposite to equal sides are equal ]                                             ...(10)
∠ADP + ∠APD+ +∠DAP + 180°  ...[ Sum of angel of a triangle = 180° ]
⇒ ∠ADP + ∠ADP + 150° = 180°    [ from (3), ∠DAP =150° from (10), ∠ADP = ∠APD ]
⇒ ∠ADP + ∠ADP = 180° - 150°
⇒ 2∠ADP = 30°
⇒ ∠ADP = `30^circ/2`
⇒∠ADP= 15°
We have ∠PDC =∠D - ∠ADP 
⇒∠PDC =90° - 15°
⇒∠PDC =75°                                               ...(11)
In ΔBPC, 
PB = BC     ...[ from (9) ]
∴  ∠PCB =∠ BPC  ...[Angel opposite to equal sides are equal ]                                           ... (12)
∠PCB + ∠BPC + ∠CBP = 180°   ....[ Sum of angel of a triangle = 180°  ]
⇒ ∠PCB + ∠PCB + 30°  = 180°  ....[ from (5), ∠CBP = 150° from (12) , ∠PCB =∠BPC ]
⇒ 2∠PCB =  180° - 150°
⇒ 2∠PCB = `30^circ/2`
⇒ ∠PCB = 15°
 We have ∠PCD = ∠C - ∠PCB 
⇒ ∠PCD = 90° - 15°
⇒ ∠PCD = 75°                                           ... (13)
In ΔDPC, 
∠PDC = 75° 
∠PCD = 75°
∠PCD + ∠PDC + ∠DPC = 180°   ...[ Sum of angles of a triangle = 180°  ]

⇒ 75°  + 75°  + ∠DPC = 180°
⇒ ∠DPC = 180° - 150°
⇒ ∠DPC = 30° 
∴  Angles of DPC, are: 75°, 30° , 75° 

shaalaa.com
Criteria for Congruence of Triangles
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Triangles [Congruency in Triangles] - Exercise 9 (B) [पृष्ठ १२५]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 9 Triangles [Congruency in Triangles]
Exercise 9 (B) | Q 2.2 | पृष्ठ १२५

संबंधित प्रश्‍न

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.


Line l is the bisector of an angle ∠A and B is any point on l. BP and BQ are perpendiculars from B to the arms of ∠A (see the given figure). Show that:

  1. ΔAPB ≅ ΔAQB
  2. BP = BQ or B is equidistant from the arms of ∠A.


Which congruence criterion do you use in the following?

Given: AC = DF

AB = DE

BC = EF

So, ΔABC ≅ ΔDEF


You want to show that ΔART ≅ ΔPEN,

If it is given that ∠T = ∠N and you are to use SAS criterion, you need to have

1) RT = and

2) PN =


You want to show that ΔART ≅ ΔPEN,

If it is given that AT = PN and you are to use ASA criterion, you need to have

1) ?

2) ?


In Δ ABC, ∠B = 35°, ∠C = 65° and the bisector of ∠BAC meets BC in P. Arrange AP, BP and CP in descending order.


If ABC and DEF are two triangles such that AC = 2.5 cm, BC = 5 cm, ∠C = 75°, DE = 2.5 cm, DF = 5cm and ∠D = 75°. Are two triangles congruent?


A triangle ABC has ∠B = ∠C.
Prove that: The perpendiculars from the mid-point of BC to AB and AC are equal.


In the figure, given below, triangle ABC is right-angled at B. ABPQ and ACRS are squares.

Prove that: 
(i) ΔACQ and ΔASB are congruent.
(ii) CQ = BS.


In the following figure, ABC is an equilateral triangle in which QP is parallel to AC. Side AC is produced up to point R so that CR = BP.

Prove that QR bisects PC.
Hint: ( Show that ∆ QBP is equilateral
⇒ BP = PQ, but BP = CR
⇒ PQ = CR ⇒ ∆ QPM ≅ ∆ RCM ).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×