मराठी

The Angle of Elevation of a Tower from a Point 200 M from Its Base is θ, When Tan θ = 2 5 . the Angle of Elevation of this Tower from a Point 120m from Its Base is φ . Calculate the - Mathematics

Advertisements
Advertisements

प्रश्न

The angle of elevation of a tower from a point 200 m from its base is θ, when `tan θ = 2/5`. The angle of elevation of this tower from a point 120m from its base is `Φ`. Calculate the height of tower and the value of `Φ`. 

बेरीज

उत्तर

Let OT be the tower .

A and B be the two points from where the angle of elevation to the top of the tower is measured.

In ΔAOT,

`"OT"/"OA" = tanθ`

⇒ `"h"/200 = 2/5`

⇒ h = 80  ...(1)

Thus , the height of the tower is 80 m.

In ΔBOT,

`"OT"/"OB" = tanΦ`

⇒ `"h"/120 = tanΦ`

⇒ `80/120 = tanΦ`   [Using (1)]

⇒ `2/3 = tanΦ`

From the table , we get `Φ = 34^circ`.

shaalaa.com
Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Heights and Distances - Exercise

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 22 Heights and Distances
Exercise | Q 32

संबंधित प्रश्‍न

Prove the following identities:

tan2 A – sin2 A = tan2 A . sin2 A


The angle of elevation of the top of an unfinished tower from a point at a distance of 80 m from its base is 30°. How much higher must the tower be raised so that its angle of elevation at the same point may be 60°?


A man observes the angle of elevation of the top of a building to be 30°. He walks towards it in a horizontal line through its base. On covering 60 m, the angle of elevation changes to 60°. Find the height of the building correct to the nearest metre.


An aeroplane, at an altitude of 250 m, observes the angles of depression of two boats on the opposite banks of a river to be 45° and 60° respectively. If the boats are on the opposite sides of the aeroplane, find the width of the river. Write the answer correct to the nearest whole number.


A boy is standing on the ground and flying a kite with 100m of sting at an elevation of 30°. Another boy is standing on the roof of a 10m high building and is flying his kite at an elevation of 45°. Both the boys are on opposite sides of both the kites. Find the length of the string that the second boy must have so that the two kites meet. 


An observer point for ships moving in the sea 500m above the sea level. The person manning this point observes the angle of depression of twc boats as 45° and 30°. Find the distance between the boats when they are on the same side of the observation point and when they are on opposite sides of the observation point. 


The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60°. At a point Y, 40m vertically above X, the angle of elevation is 45°. Find the height of the tower PQ and the distance XQ. 


A vertical pole and a vertical tower are on the same level ground in such a way that from the top of the pole, the angle of elevation of the top of the tower is 60o and the angle of depression of the bottom of the tower is 30o. Find: the height of the pole, if the height of the tower is 75 m. 


The angles of elevation of the top of a tower from two points A and B at a distance of a and b respectively from the base and in the same straight line with it are complementary. Prove that the height of the tower is `sqrt(ab)`.


From the top of a tower 100 m high a man observes the angles of depression of two ships A and B, on opposite sides of the tower as 45° and 38° respectively. If the foot of the tower and the ships are in the same horizontal line find the distance between the two ships A and B to the nearest metre.

(Use Mathematical Tabels for this question)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×