मराठी

The Areas of Two Similar Triangles ∆Abc and ∆Def Are 144 Cm2 and 81 Cm2 Respectively. If the Longest Side of Larger ∆Abc Be 36 Cm, Then the Longest Side of the (A) 20 Cm (B) 26 Cm (C) 27 Cm (D) 30 Cm - Mathematics

Advertisements
Advertisements

प्रश्न

The areas of two similar triangles ∆ABC and ∆DEF are 144 cm2 and 81 cm2 respectively. If the longest side of larger ∆ABC be 36 cm, then the longest side of the smaller triangle ∆DEF is

पर्याय

  • 20 cm

  • 26 cm

  • 27 cm

  • 30 cm

MCQ

उत्तर

Given: Areas of two similar triangles ΔABC and ΔDEF are 144cm2 and 81cm2.

If the longest side of larger ΔABC is 36cm

To find: the longest side of the smaller triangle ΔDEF

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

`\text{ar(Δ ABC)}/\text{ar(Δ DEF)}=(\text{longest side of larger Δ ABC}/\text{longest side of smaller Δ DEF})^2`

`114/81=(36/\text{longest side of smaller Δ DEF})^2`

Taking square root on both sides, we get

\[\frac{12}{9} = \frac{36}{\text{longest side of smaller ∆ DEF}}\]

`\text{longest side of smaller Δ DEF}=(36xx9)/12=27cm`

Hence the correct answer is `C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.10 [पृष्ठ १३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 7 Triangles
Exercise 7.10 | Q 3 | पृष्ठ १३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×