मराठी

Two Circle with Radii R1 And R2 Touch Each Other Externally. Let R Be the Radius of a Circle Which Touches These Two Circle as Well as a Common Tangent to the Two Circles, Prove That: - Mathematics

Advertisements
Advertisements

प्रश्न

Two circle with radii r1 and r2 touch each other externally. Let r be the radius of a circle which touches these two circle as well as a common tangent to the two circles, Prove that: `1/sqrtr + 1/sqrtr_1 + 1/sqrtr_2`.

बेरीज

उत्तर

From the adjoining figure,
PQ = SY = `sqrt( "XY"^2 - "XS"^2)`
= `sqrt((r_1 + r_2)^2 - (r_1 - r_2)^2)`
= `sqrt(4r_1r_2)`
= `sqrt(r_1r_2)`


Similarly, PR = `2 sqrt(rr_1)` and RQ = `2 sqrt(rr_2)`
Now, PQ = PR + RQ
`2 sqrt(r_1r_2) = 2 sqrt(rr_1) = 2 sqrt(rr_2) `

⇒ `sqrt(r_1r_2) = sqrt(rr_1) = sqrt(rr_2) `

Dividing by `sqrt(rr_1r_2)` on both sides,

⇒ `1/sqrtr + 1/sqrtr_1 + 1/sqrtr_2`.
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 1 | Q 26

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×