English

A Circular Coil of 250 Turns and Diameter 18 Cm Carries a Current Of 12a. What is the Magnitude of Magnetic Moment Associated With the Coil? - Physics

Advertisements
Advertisements

Question

A circular coil of 250 turns and diameter 18 cm carries a current of 12A. What is the magnitude of magnetic moment associated with the coil?

Solution

M = N I A where A =π r2 

∴ M = NI π r2
∴ M = 250 x 12 x 3.14 x 81 x10-4
∴ M = 76.30 A-m2

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

The combined resistance of a galvanometer of resistance 500Ω and its shunt is 21Ω. Calculate the value of shunt.


The combined resistance of a galvanometer of resistance 500Ω and its shunt is 21Ω. Calculate the value of shunt.


Show that the current flowing through a moving coil galvanometer is directly proportional to the angle of deflection of coil.


Write the underlying principle of a moving coil galvanometer.


 

Why does a galvanometer show a momentary deflection at the time of charging or discharging a capacitor? Write the necessary expression to explain this observation.


An ideal voltmeter has _______.

(A) low resistance

(b) high resistance

(C) infinite resistance

(D) zero resistance


A galvanometer of resistance G is converted into a voltmeter to measure upto V volts by connecting a resistance R1 in series with the coil. If a resistance R2 is connected in series with it, then it can measures upto V/2 volts. Find the resistance, in terms of R1 and R2, required to be connected to convert it into a voltmeter that can read upto 2 V. Also find the resistance G of the galvanometer in terms of R1 and R2


Draw a labelled diagram of a moving coil galvanometer. Describe briefly its principle and working.


Increasing the current sensitivity of a galvanometer may not necessarily increase its voltage sensitivity. Explain, giving reason.


  1. A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60° with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning.
  2. Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

Explain how moving coil galvanometer is converted into a voltmeter. Derive the necessary formula.


The fraction of the total current passing through the galvanometer is ............ .

a) `S/(S+G)`

b) `G/(S+G)`

c) `(S+G)/G`

d) `(S+G)/S`


A moving coil galvanometer has a resistance of 25Ω and gives a full scale deflection for a current of 10mA. How will you convert it into a voltmeter having range 0 - 100 V?


Can a galvanometer as such be used for measuring the current? Explain.


How will you convert a moving coil galvanometer into a voltmeter?


With the help of a neat and labelled diagram, explain the principle and working of a moving coil galvanometer ?


Define current sensitivity of a galvanometer.


Why does a galvanometer when connected in series with a capacitor show a momentary deflection, when it is being charged or discharged?

How does this observation lead to modifying the Ampere's circuital law?

Hence write the generalised expression of Ampere's law.


In the meter bridge experiment, balance point was observed at J with AJ = l.

(i) The values of R and X were doubled and then interchanged. What would be the new position of balance point?

(ii) If the galvanometer and battery are interchanged at the balance position, how will the alance point get affected?


State the principle of the working of a moving coil galvanometer, giving its labeled diagram ?


State the underlying principle of working of a moving coil galvanometer. Write two reasons why a galvanometer can not be used as such to measure current in a given circuit. Name any two factors on which the current sensitivity of a galvanometer depends.


What are the advantages of using soft iron as a core, instead of steel, in the coils of galvanometers?


A coil of radius 10 cm and resistance 40 Ω has 1000 turns. It is placed with its plane vertical and its axis parallel to the magnetic meridian. The coil is connected to a galvanometer and is rotated about the vertical diameter through an angle of 180°. Find the charge which flows through the galvanometer if the horizontal component of the earth's magnetic field is BH = 3.0 × 10−5 T.


Explain the significance of a radial magnetic field when a current-carrying coil is kept in it. 


The deflection in a moving coil galvanometer is ______.


The current sensitivity of a galvanometer is defined as ______.


A moving coil galvanometer has N number of turns in a coil of effective area A, it carries a current I. The magnetic field B is radial. The torque acting on the coil is ______.

An electric charge in uniform motion produces ______.

In a moving coil galvanometer the deflection (Φ) on the scale by a pointer attached to the spring is ______.


The conversion of a moving coil galvanometer into a voltmeter is done by ______.


The coil of a moving coil galvanometer is wound over a metal frame in order to ______.


The current sensitivity of a galvanometer increase by 20%. If its resistance also increases by 25%, the voltage sensitivity will ______.


Assertion (A): On Increasing the current sensitivity of a galvanometer by increasing the number of turns may not necessarily increase its voltage sensitivity.

Reason (R): The resistance of the coil of the galvanometer increases on increasing the number of turns.

Select the most appropriate answer from the options given below:


A galvanometer of resistance 100 Ω gives a full-scale deflection for a current of 10−5 A. To convert it into an ammeter capable of measuring up to 1 A we should connect a resistance of ______.


A galvanometer having a coil resistance of 60 Ω shows full-scale deflection when a current of 1.0 amp passes through it. It can be converted into an ammeter to read currents up to 5.0 amp by:


In an ammeter 0.5% of main current passes through galvanometer; If resistance of galvanometer is G, the resistance of ammeter will be.


A multirange current meter can be constructed by using a galvanometer circuit as shown in figure. We want a current meter that can measure 10 mA, 100 mA and 1A using a galvanometer of resistance 10 Ω and that prduces maximum deflection for current of 1mA. Find S1, S2 and S3 that have to be used


A galvanometer coil bas 500 turns and each tum has an average area of 3 × 10-4 m2. If a torque of 1.5 Nm is required to keep this coil parallel to a magnetic field when a current of 0.5 A is flowing through it, the strength of the field (in T) is ______.


A moving coil galvanometer has 150 equal divisions. Its current sensitivity is 10-divisions per milliampere and voltage sensitivity is 2 divisions per millivolt. In order that each division reads 1 volt, the resistance in ohms needed to be connected in series with the coil will be ______.


A resistance of 3Ω is connected in parallel to a galvanometer of resistance 297Ω. Find the fraction of current passing through the galvanometer.


A moving coil galvanometer of resistance 55 Ω produces a full scale deflection for a current of 250 mA. How will you convert it into an ammeter with a range of 0 - 3A?


To convert a moving coil galvanometer into an ammeter we need to connect a ______.


Assertion: When an electric current is passed through a moving coil galvanometer, its coil gets deflected.

Reason: A circular coil produces a uniform magnetic field around itself when an electric current is passed through it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×