English

A Moving Coil Galvanometer Has a Resistance of 25ω and Gives a Full Scale Deflection for a Current of 10ma. How Will You Convert It into a Voltmeter Having Range 0 - 100 V? - Physics

Advertisements
Advertisements

Question

A moving coil galvanometer has a resistance of 25Ω and gives a full scale deflection for a current of 10mA. How will you convert it into a voltmeter having range 0 - 100 V?

Solution

Given: G = 25 Ω, Ig = 10 mA = 10 x 10–3 A,

V = 100 V

To find: Resistance (Rs)

Formula: `R_s = V/I_g - G`

Calculation: From formula,

`R_s = 100/(10 xx 10^(-3)) - 25

= 104 – 25

= 10000 – 25

= 9975 Ω

A resistance of 9975 Ω should be connected in series.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

The combined resistance of a galvanometer of resistance 500Ω and its shunt is 21Ω. Calculate the value of shunt.


A rectangular coil of a moving coil galvanometer contains 50 turns each having area 12 cm2 . It is suspended in radial magnetic field 0.025 Wb/m2 by a fibre of twist constant 15 x10-10 Nm/degree. Calculate the sensitivity of the moving coil galvanometer.


Show that the current flowing through a moving coil galvanometer is directly proportional to the angle of deflection of coil.


Write the underlying principle of a moving coil galvanometer.


A circular coil of 250 turns and diameter 18 cm carries a current of 12A. What is the magnitude of magnetic moment associated with the coil?


Draw a labelled diagram of a moving coil galvanometer. Describe briefly its principle and working.


Two moving coil meters, M1 and M2 have the following particulars:

R1 = 10 Ω, N1 = 30,

A1 = 3.6 × 10–3 m2, B1 = 0.25 T

R2 = 14 Ω, N2 = 42,

A2 = 1.8 × 10–3 m2, B2 = 0.50 T

(The spring constants are identical for the two meters).

Determine the ratio of

  1. current sensitivity and
  2. voltage sensitivity of M2 and M1.

A rectangular coil of a moving coil galvanometer contains 100 turns, each having area
15 cm2. It is suspended in the radial magnetic field 0.03 T. The twist constant of suspension
fibre is 15 x 10-10 N-m/degree. Calculate the sensitivity of the moving coil galvanometer.


The fraction of the total current passing through the galvanometer is ............ .

a) `S/(S+G)`

b) `G/(S+G)`

c) `(S+G)/G`

d) `(S+G)/S`


Why is it necessary to introduce a radial magnetic field inside the coil of a galvanometer?


Can a galvanometer as such be used for measuring the current? Explain.


How will you convert a moving coil galvanometer into a voltmeter?


Why does a galvanometer when connected in series with a capacitor show a momentary deflection, when it is being charged or discharged?

How does this observation lead to modifying the Ampere's circuital law?

Hence write the generalised expression of Ampere's law.


Define the current sensitivity of a galvanometer ?


Write current sensitivity of a galvanomete S.I. unit. 


Figure shows two circuits each having a galvanometer and a battery of 3V.

When the galvanometers in each arrangement do not show any deflection, obtain the ratio R1/R2.


Explain, giving reasons, the basic difference in converting a galvanometer into (i) a voltmeter and (ii) an ammeter?


In the meter bridge experiment, balance point was observed at J with AJ = l.

(i) The values of R and X were doubled and then interchanged. What would be the new position of balance point?

(ii) If the galvanometer and battery are interchanged at the balance position, how will the alance point get affected?


Outline the necessary steps to convert a galvanometer of resistance RG into an ammeter of a given range ?


State the underlying principle of working of a moving coil galvanometer. Write two reasons why a galvanometer can not be used as such to measure current in a given circuit. Name any two factors on which the current sensitivity of a galvanometer depends.


What are the advantages of using soft iron as a core, instead of steel, in the coils of galvanometers?


A coil of radius 10 cm and resistance 40 Ω has 1000 turns. It is placed with its plane vertical and its axis parallel to the magnetic meridian. The coil is connected to a galvanometer and is rotated about the vertical diameter through an angle of 180°. Find the charge which flows through the galvanometer if the horizontal component of the earth's magnetic field is BH = 3.0 × 10−5 T.


Why are the pole pieces of a horseshoe magnet in a moving coil galvanometer made cylinder in shape? 


A moving coil galvanometer has a coil of resistance 59 Ω. It shows a full-scale deflection for a current of 50 mA. How will you convert it to an ammeter having a range of 0 to 3A?


State how a moving coil galvanometer can be converted into an ammeter.


Explain the significance of a radial magnetic field when a current-carrying coil is kept in it. 


Define the term 'current sensitivity' of a moving coil galvanometer.


The AC voltage across a resistance can be measured using a ______.


The deflection in a moving coil galvanometer is ______.


The current sensitivity of a galvanometer is defined as ______.


An electric charge in uniform motion produces ______.

To make the field radial in a moving coil galvanometer ______.

In a moving coil galvanometer the deflection (Φ) on the scale by a pointer attached to the spring is ______.


A moving coil galvanometer can be converted into an ammeter by ______.


The conversion of a moving coil galvanometer into a voltmeter is done by ______.


The current sensitivity of a galvanometer increase by 20%. If its resistance also increases by 25%, the voltage sensitivity will ______.


Assertion (A): On Increasing the current sensitivity of a galvanometer by increasing the number of turns may not necessarily increase its voltage sensitivity.

Reason (R): The resistance of the coil of the galvanometer increases on increasing the number of turns.

Select the most appropriate answer from the options given below:


A galvanometer having a coil resistance of 60 Ω shows full-scale deflection when a current of 1.0 amp passes through it. It can be converted into an ammeter to read currents up to 5.0 amp by:


The coil of galvanometer consists of 100 turns and effective area of 1 square cm. The restoring couple is 10-8 N-m/rad. The magnetic field between the pole pieces is 5T. The current sensitivity of this galvanometer will be ______.


A multirange voltmeter can be constructed by using a galvanometer circuit as shown in figure. We want to construct a voltmeter that can measure 2V, 20V and 200V using a galvanometer of resistance 10Ω and that produces maximum deflection for current of 1 mA. Find R1, R2 and R3 that have to be used.


A multirange current meter can be constructed by using a galvanometer circuit as shown in figure. We want a current meter that can measure 10 mA, 100 mA and 1A using a galvanometer of resistance 10 Ω and that prduces maximum deflection for current of 1mA. Find S1, S2 and S3 that have to be used


A voltmeter of variable ranges 3 V, 15 V, 150 V is to be designed by connecting resistances R1, R2, R3 in series with a galvanometer of resistance G = 20 Ω, as shown in Fig. The galvanometer gives full pass through its coil for 1 mA current i.e. "gives full pass through it's coil for 1 mA current". Then, the resistances R1, R2 and R3 (in kilo ohms) should be, respectively:


A galvanometer coil bas 500 turns and each tum has an average area of 3 × 10-4 m2. If a torque of 1.5 Nm is required to keep this coil parallel to a magnetic field when a current of 0.5 A is flowing through it, the strength of the field (in T) is ______.


A resistance of 3Ω is connected in parallel to a galvanometer of resistance 297Ω. Find the fraction of current passing through the galvanometer.


A voltmeter has a range of 0 - 20 V and a resistance of 500 Q. Explain how can be used to measure voltages from 0 - 200 volt?


A galvanometer of resistance 100 Ω gives a full-scale deflection for a potential difference of 200 mV.

  1. What must be the resistance connected to convert the galvanometer into an ammeter of the range 0-200 mA?
  2. Determine resistance of the ammeter.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×