English

A Man is Standing on the Deck of a Ship, Which is 10 M Above Water Level. He Observes the Angle of Elevation of the Top of a Hill as 60° and the Angle of Depression of the Base of the Hill as 30°. - Mathematics

Advertisements
Advertisements

Question

A man is standing on the deck of a ship, which is 10 m above water level. He observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill.

Sum

Solution

Let AB be the height of the hill.

In right-angled ΔBCD,

`"CD"/"DB" = tan 30°` 

⇒ DB = 10√3 m.

In right-angled ΔAMC,

`"AM"/"CM" = tan 60°`  

⇒ AM = √3 CM

⇒ AM = √3 DB = √3 x 10√3 = 30 m

Thus,
AB = AM + MB
AB = (30 + 10) m = 40 m

∴ Height of the hill be 40 m.

shaalaa.com
Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 4

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 4 | Q 12

RELATED QUESTIONS

An aeroplane at an altitude of 1500 metres, finds that two ships are sailing towards it in the same direction. The angles of depression as observed from the aeroplane are 45° and 30° respectively. Find the distance between the two ships


From the figure, given below, calculate the length of CD.


The horizontal distance between two towers is 75 m and the angular depression of the top of the first tower as seen from the top of the second, which is 160 m high, is 45°. Find the height of the first tower.


A flagstaff stands on a vertical pole. The angles of elevation of the top and the bottom of the flagstaff from a point on the ground are found to be 60° and 30° respectively. If the height of the pole is 2.5m. Find the height of the flagstaff. 


Two boats approaching a light house in mid sea from opposite directions observe the angle of elevation of the top of the light house as 30° and 45° respectively. If the distance between the two boats is 150m, find the height of the light house. 


From a point 10 m above the ground , the angle of elevation of the top of a tower is α and the angle of depression is β . If tan α = `5/2` and tan β = `1/4` , calculate the height of the tower to the nearest metre .


With reference to the given figure, a man stands on the ground at point A, which is on the same horizontal plane as B, the foot of the vertical pole BC. The height of the pole is 10 m. The man's eye is 2 m above the ground. He observes the angle of elevation of C, the top of the pole, as x°, where tan x° = `2/5`.

Calculate :

  1. the distance AB in metres;
  2. angle of elevation of the top of the pole when he is standing 15 metres from the pole. Give your answer to the nearest degree.


From the top of a tower 60 m high, the angles of depression of the top and bottom of pole are observed to be 45° and 60° respectively. Find the height of the pole.


An aeroplane when 3,000 meters high passes vertically above another aeroplane at an instance when their angles of elevation at the same observation point are 60° and 45° respectively. How many meters higher is the one than the other?


Vertical tower is 20m high. A man standing at some distance from the tower knows that the cosine of the angle of elevation of the top of the tower is 0.53. How far is he standing from the foot of the tower?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×