English
Karnataka Board PUCPUC Science Class 11

A Pole of Length 1.00 M Stands Half Dipped in a Swimming Pool with Water Level 50.0 Cm Higher than the Bed. - Physics

Advertisements
Advertisements

Question

A pole of length 1.00 m stands half dipped in a swimming pool with water level 50.0 cm higher than the bed. The refractive index of water is 1.33 and sunlight is coming at an angle of 45° with the vertical. Find the length of the shadow of the pole on the bed.

Sum

Solution

Given,
Length of the pole = 1.00 m
Water level of the swimming pool is 50.0 cm higher than the bed.
Refractive index (μ) of water = 1.33

According to the figure, shadow length = BA' = BD + DA'= 0.5 + 0.5 tan r
Using Snell's law:

\[Now  1 . 33 = \frac{\sin  45^\circ }{\sin  r}\] 

\[ \Rightarrow   \sin  r = \frac{1}{1 . 33\sqrt{2}} = 0 . 53\] 

\[ \Rightarrow   \cos  r = \sqrt{1 -\sin^2 r}\] 

\[ = \sqrt{1 - (0 . 53 )^2} = 0 . 85\] 

\[So,   \tan  r = 0 . 6235\] 
Therefore, shadow length of the pole  = (0.5)
\[\times\] (1 + 0.6235) = 0.81175 m
= 81.2 cm

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Geometrical Optics - Exercise [Page 413]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 18 Geometrical Optics
Exercise | Q 15 | Page 413

RELATED QUESTIONS

Double-convex lenses are to be manufactured from a glass of refractive index 1.55, with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 20 cm?


  1. Figure shows a cross-section of a ‘light pipe’ made of a glass fibre of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for which total reflections inside the pipe take place, as shown in the figure?
  2. What is the answer if there is no outer covering of the pipe?

Light incident normally on a plane mirror attached to a galvanometer coil retraces backward as shown in Figure. A current in the coil produces a deflection of 3.5° of the mirror. What is the displacement of the reflected spot of light on a screen placed 1.5 m away?


Monochromatic light of wavelength 589 nm is incident from air on a water surface. If µ for water is 1.33, find the wavelength, frequency and speed of the refracted light.


A fish which is at a depth of l2 em .in water `(mu = 4/3)` is viewed by an observer on the bank of a lake. Its apparent depth as observed: by the observer is:

a) 3 cm

b) 9 cm

c) 12 cm

d) 16 cm


 A converging lens has a focal length of 20 cm in air. It is made of a material of refractive index 1·6. If it is immersed in a liquid of refractive index 1·3, find its new focal length.


If the light moving in a straight line bends by a small but fixed angle, it may be a case of 
(a) reflection
(b) refraction
(c) diffraction
(d) dispersion.


A vessel contains water up to a height of 20 cm and above it an oil up to another 20 cm. The refractive indices of the water and the oil are 1.33 and 1.30 respectively. Find the apparent depth of the vessel when viewed from above.


Consider the situation in figure. The bottom of the pot is a reflecting plane mirror, S is a small fish and T is a human eye. Refractive index of water is μ. (a) At what distance(s) from itself will the fish see the image(s) of the eye? (b) At what distance(s) from itself will the eye see the image(s) of the fish.


What is relative refractive index?


What is critical angle and total internal reflection?


What is mirage?


Derive the equation for acceptance angle and numerical aperture, of optical fiber.


An object is immersed in a fluid of refractive index 'µ'. In order that the object becomes invisible when observed from outside, it should ______.


When a light ray is incident on a prism at an angle of 45°, the minimum deviation is obtained. If refractive index of material of prism is `sqrt2`, then angle of prism will be ______.

`sin  pi/4=1/sqrt2, sin30^circ=cos60^circ=1/2`


When a ray of light is refracted from one medium to another, then the wavelength changes from 6000Å to 4000Å. The critical angle for the interface will be ______.


For a rectangular slab, refraction takes place at ______.


Three immiscible liquids of densities d1 > d2 > d3 and refractive indices µ1 > µ2 > µ3 are put in a beaker. The height of each liquid column is `h/3`. A dot is made at the bottom of the beaker. For near normal vision, find the apparent depth of the dot.


A beam of light travels from air into a medium. Its speed and wavelength in the medium are 1.5 × 108 ms-1 and 230 nm respectively. The wavelength of light in the air will be ______.


Using Huygen's wave theory, show that (for refraction of light):

`sin i/sin r = "constant"`

where terms have their usual meaning. You must draw a neat and labelled diagram.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×