English
Karnataka Board PUCPUC Science 2nd PUC Class 12

A reaction is first order in A and second order in B. How is the rate affected when the concentrations of both A and B are doubled? - Chemistry

Advertisements
Advertisements

Question

A reaction is first order in A and second order in B. How is the rate affected when the concentrations of both A and B are doubled?

Numerical

Solution

When the concentrations of both A and B are doubled,

Rate = k(2a) (2b)2

= 8kab2

Therefore, the rate of reaction will increase 8 times.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Chemical Kinetics - Exercises [Page 118]

APPEARS IN

NCERT Chemistry [English] Class 12
Chapter 4 Chemical Kinetics
Exercises | Q 9.3 | Page 118

RELATED QUESTIONS

In a first order reaction x → y, 40% of the given sample of compound remains unreacted in 45 minutes. Calculate rate constant of the reaction.


A reaction is second order in A and first order in B.

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of A three times?

(iii) How is the rate affected when the concentrations of both A and B are doubled?

 


For a reaction A + B ⟶ P, the rate is given by

Rate = k [A] [B]2

How is the rate of reaction affected if the concentration of B is doubled?


For a reaction A + B ⟶ P, the rate is given by

Rate = k [A] [B]2

What is the overall order of reaction if A is present in large excess?


For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained :

t/s 0 30 60
[CH3COOCH3] / mol L–1 0.60 0.30 0.15

(i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.

(ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

(Given log 2 = 0.3010, log 4 = 0.6021)


For a chemical reaction R → P, the variation in the concentration (R) vs. time (t) plot is given as:

(i) Predict the order of the reaction.

(ii) What is the slope of the curve ?

(iii) Write the unit of rate constant for this reaction.


From the rate expression for the following reaction, determine the order of reaction and the dimension of the rate constant.

\[\ce{CH3CHO_{(g)} -> CH4_{(g)} + CO_{(g)}}\] Rate = k [CH3CHO]3/2


A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is doubled?


Which of the following statements is not correct about order of a reaction.


Compounds ‘A’ and ‘B’ react according to the following chemical equation.
\[\ce{A(g) + 2B(g) -> 2C(g)}\]
Concentration of either ‘A’ or ‘B’ were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.

Experiment Initial
concentration
of [A]/mol L¹
Initial
concentration
of [B]/mol L¹
Initial rate of
formation of
[C]/mol L¹ s¹
1. 0.30 0.30 0.10
2. 0.30 0.60 0.40
3. 0.60 0.30 0.20

For which type of reactions, order and molecularity have the same value?


Match the graph given in Column I with the order of reaction given in Column II. More than one item in Column I may link to the same item of Column II.

  Column I Column II
(i)  
(ii)  (a) 1st order
(iii) (b) Zero-order
(iv)    

In the presence of a catalyst, the heat evolved or absorbed during the reaction.


Identify the order of reaction from the following unit for its rate constant:

L mol–1s–1


Read the following passage and answer the questions that follow:

The rate of reaction is concerned with decrease in the concentration of reactants or increase in the concentration of products per unit of time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. A number of factors such as temperature, concentration of reactants, catalyst affect the rate of reaction. Mathematical representation of rate of a reaction is given by rate law:

Rate = k[A]x [B]y

x and y indicate how sensitive the rate is to change in concentration of A and B. Sum of x + y gives the overall order of a reaction.
When a sequence of elementary reactions gives us the products, the reaction is called complex reaction. Molecularity and order of an elementary reaction are same. Zero-order reactions are relatively uncommon but they occur under special conditions. All natural and artificial radioactive decay of unstable nuclei takes place by first-order kinetics.

  1. What is the effect of temperature on the rate constant of a reason?    [1]
  2. For a reaction \[\ce{A + B → Product}\], the rate law is given by, Rate = k[A]2 [B]1/2. What is the order of the reaction?    [1]
  3. How order and molecularity are different for complex reactions?    [1]
  4. A first-order reaction has a rate constant 2 × 10–3 s–1. How long will 6 g of this reactant take to reduce to 2 g?    [2]
    OR
    The half-life for radioactive decay of 14C is 6930 years. An archaeological artifact containing wood had only 75% of the 14C found in a living tree. Find the age of the sample.
    [log 4 = 0.6021, log 3 = 0.4771, log 2 = 0.3010, log 10 = 1]    [2]

On heating compound (A) gives a gas (B) which is constituent of air. The gas when treated with H2 in the presence of catalyst gives another gas (C) which is basic in nature, (A) should not be ______.


A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B (in s) is ______. (Use ln 2 = 0.693)


Assertion (A): Order of reaction is applicable to elementary as well as complex reactions.

Reason (R): For a complex reaction, molecularity has no meaning.


A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is reduced to half?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×