Advertisements
Advertisements
Question
ABCD is rectangle formed by the points A(-1, -1), B(-1, 4), C(5, 4) and D(5, -1). If P,Q,R and S be the midpoints of AB, BC, CD and DA respectively, Show that PQRS is a rhombus.
Solution
Here, the points P ,Q, Rand S are the midpoint of ,AB ,BC, CD and DA respectively. Then
`"Coordinates of P = ((-1-1)/2 , (-1+4)/2) = (-1,3/2)`
`"Coordinates of Q = ((-1+5)/2 , (4+4)/2) = (2,.4)`
`"Coordinates of R = ((5+5)/2 , (4-1)/2)= (5,3/2)`
`"Coordinates of " S = ((-1+5)/2 ,(-1-1)/2) = (2,-1)`
Now,
`PQ = sqrt((2+1)^2 +(4-3/2)^2) = sqrt(9+25/4) = sqrt(61/2)`
`QR = sqrt((5-2)^2 +(3/2-4)^2 )= sqrt(9+25/4) = sqrt(61/2)`
`RS = sqrt((5-2)^2 +(3/2+1)^2 )= sqrt(9+25/4) = sqrt(61/2)`
`SP = sqrt((2+1)^2 +(-1-3/2)^2 )= sqrt(9+25/4) = sqrt(61/2)`
` PR = sqrt((5-1)^2 +(3/2-3/2)^2) = sqrt(36) = 6`
`QS = sqrt((2-2)^2 +(-1-4)^2) = sqrt(25) =5`
Thus, PQ = QR = RS = SP and PR ≠ QS therefore PQRS is a rhombus
APPEARS IN
RELATED QUESTIONS
Find the distance between the following pair of points:
(a, 0) and (0, b)
Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:
A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)
Find the points of trisection of the line segment joining the points:
5, −6 and (−7, 5),
Points P, Q, R and S divide the line segment joining the points A(1,2) and B(6,7) in five equal parts. Find the coordinates of the points P,Q and R
If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
If P ( 9a -2 , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .
Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.
Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.
Write the coordinates of a point on X-axis which is equidistant from the points (−3, 4) and (2, 5).
If P (2, 6) is the mid-point of the line segment joining A(6, 5) and B(4, y), find y.
The distance between the points (a cos 25°, 0) and (0, a cos 65°) is
A line segment is of length 10 units. If the coordinates of its one end are (2, −3) and the abscissa of the other end is 10, then its ordinate is
The area of the triangle formed by (a, b + c), (b, c + a) and (c, a + b)
If points (a, 0), (0, b) and (1, 1) are collinear, then \[\frac{1}{a} + \frac{1}{b} =\]
If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is
Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
The perpendicular distance of the point P(3, 4) from the y-axis is ______.
The coordinates of two points are P(4, 5) and Q(–1, 6). Find the difference between their abscissas.
Co-ordinates of origin are ______.