English
Karnataka Board PUCPUC Science Class 11

Assume that a Tunnel is Dug Along a Chord of the Earth, at a Perpendicular Distance R/2 from the Earth'S Centre Where R is the Radius of the Earth. - Physics

Advertisements
Advertisements

Question

Assume that a tunnel is dug along a chord of the earth, at a perpendicular distance R/2 from the earth's centre where R is the radius of the earth. The wall of the tunnel is frictionless. (a) Find the gravitational force exerted by the earth on a particle of mass mplaced in the tunnel at a distance x from the centre of the tunnel. (b) Find the component of this force along the tunnel and perpendicular to the tunnel. (c) Find the normal force exerted by the wall on the particle. (d) Find the resultant force on the particle. (e) Show that the motion of the particle in the tunnel is simple harmonic and find the time period.

Sum

Solution

If \[\rho\]  is the density of the earth, then mass of the earth \[\left( M \right)\] is given by,

\[M = \frac{4}{3}\pi R^3 \rho\] 

\[\text {Similarly,   mass}  \left( M' \right) \text{ of  the  part  of  earth  having  radius } \left( x \right)\text{  is  given  by, } \] \[M' = \frac{4}{3}\pi {x_1}^3 \rho\] 

\[M' = \left( \frac{M}{R^3} \right) {x_1}^3\]

(a) Let F be the gravitational force exerted by the earth on the particle of mass m. Then, its value is given by,

\[F = \frac{GM'm}{x_1^2}\] 

\[\text {Substituting  the  value  of  M'  in  the  above  equation,   we  get: }\] 

\[F = \frac{GMm}{R^3}\frac{x_1^3}{x_1^2}\] 

\[   = \frac{GMm}{R^3} x_1  = \frac{GMm}{R^3}\sqrt{x^2 + \left( \frac{R^2}{4} \right)}\]

(b)

\[F_y  = Fcos\theta\] 

\[     = \frac{GMm x_1}{R^3}\frac{x}{x_1} = \frac{GMmx}{R^3}\] 

\[ F_x  = F\sin  \theta\] 

\[     = \frac{GMm x_1}{R^3}\frac{R}{2 x_1} = \frac{GMm}{2 R^2}\]

 (c)

\[F_x  = \frac{GMm}{R^2}\]

\[\because\] Normal force exerted by the wall N = Fx
(d)The resultant force is \[\frac{GMmx}{R^3}\]

(e) Acceleration = Driving force/mass 

\[= \frac{GMmx}{R^3 m}\] 

\[ = \frac{GMx}{R^3}\]

\[\Rightarrow\] a \[\propto\]  x      (the body executes S.H.M.)
 \[\frac{a}{x} =  \omega^2  = \frac{GM}{R^3}\] 

\[ \Rightarrow \omega = \sqrt{\frac{Gm}{R^3}}\] 

\[ \Rightarrow T = 2\pi\sqrt{\frac{R^3}{GM}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Exercise [Page 255]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Exercise | Q 42 | Page 255

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?

(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3


A particle executes S.H.M. with a period of 10 seconds. Find the time in which its potential energy will be half of its total energy.


Show variation of displacement, velocity, and acceleration with phase for a particle performing linear S.H.M. graphically, when it starts from the extreme position.


Hence obtain the expression for acceleration, velocity and displacement of a particle performing linear S.H.M.


A particle executing simple harmonic motion comes to rest at the extreme positions. Is the resultant force on the particle zero at these positions according to Newton's first law?


The energy of system in simple harmonic motion is given by \[E = \frac{1}{2}m \omega^2 A^2 .\] Which of the following two statements is more appropriate?
(A) The energy is increased because the amplitude is increased.
(B) The amplitude is increased because the energy is increased.


A pendulum clock gives correct time at the equator. Will it gain time or loose time as it is taken to the poles?


Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.


Which of the following quantities are always zero in a simple harmonic motion?
(a) \[\vec{F} \times \vec{a} .\]

(b) \[\vec{v} \times \vec{r} .\]

(c) \[\vec{a} \times \vec{r} .\]

(d) \[\vec{F} \times \vec{r} .\]


A simple pendulum of length 40 cm is taken inside a deep mine. Assume for the time being that the mine is 1600 km deep. Calculate the time period of the pendulum there. Radius of the earth = 6400 km.


A simple pendulum of length 1 feet suspended from the ceiling of an elevator takes π/3 seconds to complete one oscillation. Find the acceleration of the elevator.


A uniform rod of length l is suspended by an end and is made to undergo small oscillations. Find the length of the simple pendulum having the time period equal to that of the road.


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


The length of a second’s pendulum on the surface of the Earth is 0.9 m. The length of the same pendulum on the surface of planet X such that the acceleration of the planet X is n times greater than the Earth is


What is an epoch?


Describe Simple Harmonic Motion as a projection of uniform circular motion.


Consider the Earth as a homogeneous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple harmonic motion such that its time period is

T = `2π sqrt("R"/"g")`


A simple harmonic motion is given by, x = 2.4 sin ( 4πt). If distances are expressed in cm and time in seconds, the amplitude and frequency of S.H.M. are respectively, 


The displacement of a particle is represented by the equation y = sin3ωt. The motion is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×