Advertisements
Advertisements
Question
एक समांतर चतुर्भुज के अधिक कोण वाले शीर्ष से खींचे गये दो शीर्षलंबों के बीच का कोण 45∘ है। इस समांतर चतुर्भुज के कोण ज्ञात कीजिए।
Solution
मान लीजिए ABCD एक समांतर चतुर्भुज है, जहाँ BE और BF शीर्ष B से भुजाओं DC और AD पर क्रमशः लंब हैं।
माना ∠A = ∠C = x, ∠B = ∠D = y ...[समांतरकोण में सम्मुख कोण बराबर होते हैं।]
अब, ∠A + ∠B = 180° ...[समांतर चतुर्भुज की आसन्न भुजाएँ संपूरक होती हैं।]
त्रिभुज ABF में;
∠ABF = 90° – x
और त्रिभुज BEC में,
∠EBC = 90° – x
तो, x + 90° – x + 45° + 90° – x = 180°
⇒ – x = 180° – 225°
⇒ x = 45°
तो, ∠A = ∠C = 45°
∠B = 45° + 45° + 45° = 135°
⇒ ∠D = 135°
अतः, कोण 45°, 135°, 45° और 135° हैं।
APPEARS IN
RELATED QUESTIONS
निम्न समांतर चतुर्भुज में अज्ञात x, y, z के मानों को ज्ञात कीजिए:
किसी समांतर चतुर्भुज के दो आसन्न कोनो के माप बराबर हैं। समांतर चतुर्भुज के सभी कोणों की माप ज्ञात कीजिए।
बताइए कैसे एक वर्ग एक समांतर चतुर्भुज है।
एक समांतर चतुर्भुज के विकर्ण परस्पर लंब होते हैं। क्या यह कथन सत्य है? अपने उत्तर के लिए कारण दीजिए।
यदि किसी समांतर चतुर्भुज के दो आसन्न कोण (5x − 5)∘ और (10x + 35)∘ हैं, तो इन कोणों का अनुपात होगा –
एक समांतर चतुर्भुज की आसन्न भुजाएँ 5 cm और 9 cm है। उसका परिमाप ______ है।
यदि एक चतुर्भुज के सम्मुख कोण बराबर हों, तो वह अवश्य ही समांतर चतुर्भुज होगा।
समांतर चतुर्भुज LOST में, SN ⊥ OL और SM ⊥ LT है। ∠STM, ∠SON और ∠NSM ज्ञात कीजिए।
नीचे दिये गये एक जहाज कौँ आकृति में, ABDH और CEFG दो समांतर चतुर्भुज हैं। x का मान ज्ञात कीजिए।
ABCD एक समांतर चतुर्भुज है। x, y और z के मान ज्ञात कीजिए।
किसी समांतर चतुर्भुज का एक विकर्ण उसके एक कोण को समद्विभाजित करता है। क्या वह दूसरे कोण को भी समद्विभाजित करेगा? कारण दीजिए।
निम्न आकृति में, FD || BC || AE है और AC || ED है। x का मान ज्ञात कीजिए –
एक समांतर चतुर्भुज HOME की रचना कीजिए, जिसमें HO = 6 cm, HE = 4 cm और OE = 3 cm है।
आकृति में `square` PQRS तथा `square` ABCR दो समांतर चतुर्भुज है। ∠P = 110° तो `square `ABCR के सभी कोणों के माप ज्ञात कीजिए।
आकृति में, बिंदु G, ΔDEF की माध्यिकाओं का संगामी बिंदु है। किरण DG पर बिंदु H इस प्रकार लें कि D-G-H तथा DG = GH, हो तो सिद्ध कीजिए कि `square` GEHF समांतर चतुर्भुज है।
संलग्न आकृति में रेख AB || रेख PQ , रेख AB ≅ रेख PQ, रेख AC || रेख PR, रेख AC ≅ रेख PR तो सिद्ध कीजिए कि रेख BC || रेख QR तथा रेख BC ≅ रेख QR