Advertisements
Advertisements
Question
Expand (3p + 4q)3
Solution
(3p + 4q)3
Comparing (3p + 4q)3 with (a + b)3 we have a = 3p and b = 4q
(a + b)3 = a3 + 3a2b + 3ab2 + b2
(3p + 4q)3 = (3p)3 + 3(3p)2(4q) + 3(3p)(4q)2 + (4q)3
= 33p3 + 3(9p2)(4q) + 9p(16q2) – 43q3
= 27p3 + 108p2q + 144pq3 + 64q3
APPEARS IN
RELATED QUESTIONS
Expand.
(7 + m)3
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Evaluate the following :
(8.12)3 - (3.12)3