English

If a (–14, –10), B(6, –2) is Given, Find the Coordinates of the Points Which Divide Segment Ab into Four Equal Parts. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If A(–14, –10), B(6, –2) is given, find the coordinates of the points which divide segment AB into four equal parts.

Sum

Solution

Let the points P, Q, and R divide seg AB into four equal parts.

∴ AP = PQ = QR = RB

Point Q is the mid-point of seg AB.

∴ By mid-point formula,

`"x co-ordinate of Q" = (x_1 + x_2)/2 = (−14 + 6)/2 = (−8)/2 = −4`

`"y co-ordinate of Q" = (y_1 + y_2)/2 = (−10 + (−2))/2 = (−10 −2)/2 = (−12)/2 = − 6`

∴ Co-ordinates of Q are (−4, −6).

 

Point P is the mid-point of seg AQ.

∴ By mid-point formula,

`"x co-ordinate of P" = (x_1 + x_2)/2 = (−14 + (−4))/2 = (−14 −4)/2 = (−18)/2 = −9`

`"y co-ordinate of P" = (y_1 + y_2)/2 = (−10 + (−6))/2 = (−10 −6)/2 = (−16)/2 = −8`

∴ Co-ordinates of P are (−9, −8). 

 

Point R is the mid-point of seg QB.

∴ By mid-point formula,

`"x co-ordinate of R" = (x_1 + x_2)/2 = (−4 + 6)/2 = 2/2 = 1`

`"y co-ordinate of R" = (y_1 + y_2)/2 = (−6 + (−2))/2 = (−6 −2)/2 = (−8)/2 = −4`

∴ Co-ordinates of R are (1, −4). 

∴ The coordinates of the points dividing seg AB into four equal parts are P(−9, −8), Q(−4, −6), and R(1, –4).

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Co-ordinate Geometry - Practice Set 5.2 [Page 116]

RELATED QUESTIONS

Write down the equation of a line whose slope is 3/2 and which passes through point P, where P divides the line segment AB joining A(-2, 6) and B(3, -4) in the ratio 2 : 3.


Construct a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60˚. Now construct another triangle whose sides are 5/7 times the corresponding sides of ΔABC.


Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are `7/5` of the corresponding sides of the first triangle. Give the justification of the construction.


Construct an isosceles triangle with base 8 cm and altitude 4 cm. Construct another triangle whose sides are `2/3` times the corresponding sides of the isosceles triangle.


Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also, justify your construction.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are 3/4 times the corresponding sides of the first triangle.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


Draw a triangle ABC with side BC = 6 cm, ∠C = 30° and ∠A = 105°. Then construct another triangle whose sides are `2/3` times the corresponding sides of ΔABC.

 


Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.


If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.


The line segment AB is divided into five congruent parts at P, Q, R and S such that A–P–Q–R–S–B. If point Q(12, 14) and S(4, 18) are given find the coordinates of A, P, R, B.


Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


Draw seg AB of length 9.7 cm. Take a point P on it such that A-P-B, AP = 3.5 cm. Construct a line MNsag AB through point P.


Choose the correct alternative:

ΔPQR ~ ΔABC, `"PR"/"AC" = 5/7`, then


Draw seg AB of length 9 cm and divide it in the ratio 3 : 2


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm, ∠D = 30°, ∠N = 20° and `"HP"/"ED" = 4/5`. Then construct ΔRHP and ΔNED


ΔPQR ~ ΔABC. In ΔPQR, PQ = 3.6cm, QR = 4 cm, PR = 4.2 cm. Ratio of the corresponding sides of triangle is 3 : 4, then construct ΔPQR and ΔABC


Construct an equilateral ∆ABC with side 5 cm. ∆ABC ~ ∆LMN, ratio the corresponding sides of triangle is 6 : 7, then construct ΔLMN and ΔABC


ΔABC ~ ΔPBR, BC = 8 cm, AC = 10 cm , ∠B = 90°, `"BC"/"BR" = 5/4` then construct ∆ABC and ΔPBR


To divide a line segment AB in the ratio p : q (p, q are positive integers), draw a ray AX so that ∠BAX is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that ∠BAX is an acute angle, then draw a ray BY parallel to AX and the points A1, A2, A3, ... and B1, B2, B3, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


A rhombus ABCD in which AB = 4cm and ABC = 60o, divides it into two triangles say, ABC and ADC. Construct the triangle AB’C’ similar to triangle ABC with scale factor `2/3`. Select the correct figure.


A triangle ABC is such that BC = 6cm, AB = 4cm and AC = 5cm. For the triangle similar to this triangle with its sides equal to `3/4`th of the corresponding sides of ΔABC, correct figure is?


To divide a line segment PQ in the ratio 5 : 7, first a ray PX is drawn so that ∠QPX is an acute angle and then at equal distances points are marked on the ray PX such that the minimum number of these points is ______.


If the perpendicular distance between AP is given, which vertices of the similar triangle would you find first?


Match the following based on the construction of similar triangles, if scale factor `(m/n)` is.

  Column I   Column II
i >1 a) The similar triangle is smaller than the original triangle.
ii <1 b) The two triangles are congruent triangles.
iii =1 c) The similar triangle is larger than the original triangle.

The point W divides the line XY in the ratio m : n. Then, the ratio of lengths of the line segments XY : WX is ______.


Two line segments AB and AC include an angle of 60° where AB = 5 cm and AC = 7 cm. Locate points P and Q on AB and AC, respectively such that AP = `3/4` AB and AQ = `1/4` AC. Join P and Q and measure the length PQ.


Draw an isosceles triangle ABC in which AB = AC = 6 cm and BC = 5 cm. Construct a triangle PQR similar to ∆ABC in which PQ = 8 cm. Also justify the construction.


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×