English

Write Down the Equation of a Line Whose Slope is 3/2 and Which Passes Through Point P, Where P Divides the Line Segment AB Joining A(-2, 6) and B(3, -4) in the Ratio 2 : 3. - Geometry Mathematics 2

Advertisements
Advertisements

Question

Write down the equation of a line whose slope is 3/2 and which passes through point P, where P divides the line segment AB joining A(-2, 6) and B(3, -4) in the ratio 2 : 3.

Solution

Suppose that P(x, y) divides the line joining the points A(x1, y1) and B(x2, y2) internally in the ratio m : n.

Then the co-ordinates of P are given by the formula,

`x=(mx_2+nx_1)/(m+n)" and "y=(my_2+ny_1)/(m+n)`

`rArrx=(2(3)+3(-2))/(2+3)" and "y=(2(-4)+3(6))/(2+3)`

`rArrx=0" and "y=(-8+18)/5`

`rArrx=0" and "y=10/5`

`rArrx=0" and "y=2`

Thus P(x, y) ≡ P(0, 2)

Now we need to find the equation of the line

whose slope is m = 3/2 and passing though the point P(x1, y1) ≡ P(0, 2)

is y - y1 = m(x - x1)

`rArry-2=3/2(x-0)`

`rArr2(y-2)=3(x-0)`

`rArr2y-4=3x`

`rArr3x-2y+4=0`

 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Set B

RELATED QUESTIONS

Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.

 


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Draw a line segment of length 7 cm and divide it internally in the ratio 2 : 3.


Determine a point which divides a line segment of length 12 cm internally in the ratio 2 : 3 Also, justify your construction.


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Construct a triangle similar to a given ΔXYZ with its sides equal to (3/4)th of the corresponding sides of ΔXYZ. Write the steps of construction.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


Construct a right triangle in which the sides, (other than the hypotenuse) are of length 6 cm and 8 cm. Then construct another triangle, whose sides are `3/5` times the corresponding sides of the given triangle.


∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.


Construct ∆PYQ such that, PY = 6.3 cm, YQ = 7.2 cm, PQ = 5.8 cm. If \[\frac{YZ}{YQ} = \frac{6}{5},\] then construct ∆XYZ similar to ∆PYQ.


Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.


Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


Draw seg AB of length 9.7 cm. Take a point P on it such that A-P-B, AP = 3.5 cm. Construct a line MNsag AB through point P.


Find the ratio in which the segment joining the points (1, –3) and (4, 5) is divided by the x-axis? Also, find the coordinates of this point on the x-axis.


Choose the correct alternative:


In the figure ΔABC ~ ΔADE then the ratio of their corresponding sides is ______


A rhombus ABCD in which AB = 4cm and ABC = 60o, divides it into two triangles say, ABC and ADC. Construct the triangle AB’C’ similar to triangle ABC with scale factor `2/3`. Select the correct figure.


To divide a line segment PQ in the ratio 5 : 7, first a ray PX is drawn so that ∠QPX is an acute angle and then at equal distances points are marked on the ray PX such that the minimum number of these points is ______.


The ratio of corresponding sides for the pair of triangles whose construction is given as follows: Triangle ABC of dimensions AB = 4cm, BC = 5 cm and ∠B= 60°.A ray BX is drawn from B making an acute angle with AB.5 points B1, B2, B3, B4 and B5 are located on the ray such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.

B4 is joined to A and a line parallel to B4A is drawn through B5 to intersect the extended line AB at A’.

Another line is drawn through A’ parallel to AC, intersecting the extended line BC at C’. Find the ratio of the corresponding sides of ΔABC and ΔA′BC′.


If you need to construct a triangle with point P as one of its vertices, which is the angle that you need to construct a side of the triangle?


Match the following based on the construction of similar triangles, if scale factor `(m/n)` is.

  Column I   Column II
i >1 a) The similar triangle is smaller than the original triangle.
ii <1 b) The two triangles are congruent triangles.
iii =1 c) The similar triangle is larger than the original triangle.

The point W divides the line XY in the ratio m : n. Then, the ratio of lengths of the line segments XY : WX is ______.


The basic principle used in dividing a line segment is ______.


By geometrical construction, it is possible to divide a line segment in the ratio `sqrt(3) : 1/sqrt(3)`.


To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor `5/3`.


Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm and ∠ABC = 60°, divide it into triangles BCD and ABD by the diagonal BD. Construct the triangle BD' C' similar to ∆BDC with scale factor `4/3`. Draw the line segment D'A' parallel to DA where A' lies on extended side BA. Is A'BC'D' a parallelogram?


Draw a line segment of length 7.5 cm and divide it in the ratio 1:3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×