हिंदी

Write Down the Equation of a Line Whose Slope is 3/2 and Which Passes Through Point P, Where P Divides the Line Segment AB Joining A(-2, 6) and B(3, -4) in the Ratio 2 : 3. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Write down the equation of a line whose slope is 3/2 and which passes through point P, where P divides the line segment AB joining A(-2, 6) and B(3, -4) in the ratio 2 : 3.

उत्तर

Suppose that P(x, y) divides the line joining the points A(x1, y1) and B(x2, y2) internally in the ratio m : n.

Then the co-ordinates of P are given by the formula,

`x=(mx_2+nx_1)/(m+n)" and "y=(my_2+ny_1)/(m+n)`

`rArrx=(2(3)+3(-2))/(2+3)" and "y=(2(-4)+3(6))/(2+3)`

`rArrx=0" and "y=(-8+18)/5`

`rArrx=0" and "y=10/5`

`rArrx=0" and "y=2`

Thus P(x, y) ≡ P(0, 2)

Now we need to find the equation of the line

whose slope is m = 3/2 and passing though the point P(x1, y1) ≡ P(0, 2)

is y - y1 = m(x - x1)

`rArry-2=3/2(x-0)`

`rArr2(y-2)=3(x-0)`

`rArr2y-4=3x`

`rArr3x-2y+4=0`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Set B

संबंधित प्रश्न

Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are `7/5` of the corresponding sides of the first triangle. Give the justification of the construction.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are 3/4 times the corresponding sides of the first triangle.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB) = 3/5 `.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


Construct a right triangle in which the sides, (other than the hypotenuse) are of length 6 cm and 8 cm. Then construct another triangle, whose sides are `3/5` times the corresponding sides of the given triangle.


Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.


If A(–14, –10), B(6, –2) is given, find the coordinates of the points which divide segment AB into four equal parts.


If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.


Δ SHR ∼ Δ SVU. In Δ SHR, SH = 4.5 cm, HR = 5.2 cm, SR = 5.8 cm and
SHSV = 53 then draw Δ SVU.


Δ AMT ∼ ΔAHE. In  Δ AMT, MA = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `(MA)/(HA) = 7/5`. construct  Δ AHE. 


Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


Find the ratio in which the segment joining the points (1, –3) and (4, 5) is divided by the x-axis? Also, find the coordinates of this point on the x-axis.


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

∆ABC ∼ ∆AQR. `"AB"/"AQ" = 7/5`, then which of the following option is true?


∆ABC ~ ∆PBQ. In ∆ABC, AB = 3 cm, ∠B = 90°, BC = 4 cm. Ratio of the corresponding sides of two triangles is 7 : 4. Then construct ∆ABC and ∆PBQ


Construct an equilateral ∆ABC with side 5 cm. ∆ABC ~ ∆LMN, ratio the corresponding sides of triangle is 6 : 7, then construct ΔLMN and ΔABC


ΔAMT ~ ΔAHE. In ΔAMT, AM = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `"AM"/"HA" = 7/5`, then construct ΔAMT and ΔAHE


Point P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1. If P lies on the line x - y + 2 = 0, then value of k is ______.


To divide a line segment AB in the ratio p : q (p, q are positive integers), draw a ray AX so that ∠BAX is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 5 : 7, first a ray AX is drawn so that ∠BAX is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is ______.


To construct a triangle similar to a given ΔABC with its sides `3/7` of the corresponding sides of ΔABC, first draw a ray BX such that ∠CBX is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points B1, B2, B3, ... on BX at equal distances and next step is to join ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


To divide a line segment PQ in the ratio 5 : 7, first a ray PX is drawn so that ∠QPX is an acute angle and then at equal distances points are marked on the ray PX such that the minimum number of these points is ______.


Match the following based on the construction of similar triangles, if scale factor `(m/n)` is.

  Column I   Column II
i >1 a) The similar triangle is smaller than the original triangle.
ii <1 b) The two triangles are congruent triangles.
iii =1 c) The similar triangle is larger than the original triangle.

To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×