हिंदी

Construct an equilateral ∆ABC with side 5 cm. ∆ABC ~ ∆LMN, ratio the corresponding sides of triangle is 6 : 7, then construct ΔLMN and ΔABC - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Construct an equilateral ∆ABC with side 5 cm. ∆ABC ~ ∆LMN, ratio the corresponding sides of triangle is 6 : 7, then construct ΔLMN and ΔABC

आकृति

उत्तर


Analysis: ∆ABC ∼ ∆LMN

∴ `"AB"/"LM" = "BC"/"MN" = "AC"/"LN"`  ......[Corresponding sides of similar triangles]

∴ `5/"LM" = 5/"MN" = 5/"LN" = 6/7`   .....[Given]

∴ `5/"LM" = 6/7`

∴ LM = `(5 xx 7)/6`

∴ LM = 5.8 cm (approx)

∴ LM = MN = LN = 5.8 cm (approx)    .....[Equilateral triangle]

Steps of Construction:

  ∆ABC ∆PQR
i. Draw seg BC of 5 cm Draw seg MN of 5.8 cm
ii. Draw two arcs at 5 cm from point B and point C respectively. Draw two arcs at 5.8 cm from point M and point N respectively.
iii. Name the point of intersection of two arcs as A. Name the point of intersection of two arcs as L.
iv. Join seg AB and seg AC. Join seg LM and seg LN.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Geometric Constructions - Q.3 (B)

संबंधित प्रश्न

Construct a Δ ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ΔAB’C’ similar to ΔABC with base AB’ = 8 cm.


Find the ratio in which the line segment joining the points A(3,- 3) and B(- 2, 7) is divided by x-axis. Also find the coordinates of the point of division.


Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.

 


Draw a line segment of length 7 cm and divide it internally in the ratio 2 : 3.


Determine a point which divides a line segment of length 12 cm internally in the ratio 2 : 3 Also, justify your construction.


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Draw a right triangle ABC in which AC = AB = 4.5 cm and ∠A = 90°. Draw a triangle similar to ΔABC with its sides equal to (5/4)th of the corresponding sides of ΔABC.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are 3/4 times the corresponding sides of the first triangle.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a triangle ABC with side BC = 6 cm, ∠C = 30° and ∠A = 105°. Then construct another triangle whose sides are `2/3` times the corresponding sides of ΔABC.

 


∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that `"PQ"/"LT" = 3/4`.


∆AMT ~ ∆AHE. In ∆AMT, AM = 6.3 cm, ∠TAM = 50°, AT = 5.6 cm. `"AM"/"AH" = 7/5`. Construct ∆AHE.


Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.


If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.


Find the ratio in which the segment joining the points (1, –3) and (4, 5) is divided by the x-axis? Also, find the coordinates of this point on the x-axis.


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

______ number of tangents can be drawn to a circle from the point on the circle.


Draw seg AB of length 9 cm and divide it in the ratio 3 : 2


If the point P (6, 7) divides the segment joining A(8, 9) and B(1, 2) in some ratio, find that ratio

Solution:

Point P divides segment AB in the ratio m: n.

A(8, 9) = (x1, y1), B(1, 2 ) = (x2, y2) and P(6, 7) = (x, y)

Using Section formula of internal division,

∴ 7 = `("m"(square) - "n"(9))/("m" + "n")`

∴ 7m + 7n = `square` + 9n

∴ 7m – `square` = 9n – `square`

∴ `square` = 2n

∴ `"m"/"n" = square`


Point P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1. If P lies on the line x - y + 2 = 0, then value of k is ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


A rhombus ABCD in which AB = 4cm and ABC = 60o, divides it into two triangles say, ABC and ADC. Construct the triangle AB’C’ similar to triangle ABC with scale factor `2/3`. Select the correct figure.


For ∆ABC in which BC = 7.5cm, ∠B =45° and AB - AC = 4, select the correct figure.


To divide a line segment PQ in the ratio 5 : 7, first a ray PX is drawn so that ∠QPX is an acute angle and then at equal distances points are marked on the ray PX such that the minimum number of these points is ______.


The ratio of corresponding sides for the pair of triangles whose construction is given as follows: Triangle ABC of dimensions AB = 4cm, BC = 5 cm and ∠B= 60°.A ray BX is drawn from B making an acute angle with AB.5 points B1, B2, B3, B4 and B5 are located on the ray such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.

B4 is joined to A and a line parallel to B4A is drawn through B5 to intersect the extended line AB at A’.

Another line is drawn through A’ parallel to AC, intersecting the extended line BC at C’. Find the ratio of the corresponding sides of ΔABC and ΔA′BC′.


If a triangle similar to given ΔABC with sides equal to `3/4` of the sides of ΔABC is to be constructed, then the number of points to be marked on ray BX is ______.


Construction of similar polygons is similar to that of construction of similar triangles. If you are asked to construct a parallelogram similar to a given parallelogram with a given scale factor, which of the given steps will help you construct a similar parallelogram?


What is the ratio `(AC)/(BC)` for the following construction: A line segment AB is drawn. A single ray is extended from A and 12 arcs of equal lengths are cut, cutting the ray at A1, A2… A12.A line is drawn from A12 to B and a line parallel to A12B is drawn, passing through the point A6 and cutting AB at C.


By geometrical construction, it is possible to divide a line segment in the ratio `sqrt(3) : 1/sqrt(3)`.


Draw an isosceles triangle ABC in which AB = AC = 6 cm and BC = 5 cm. Construct a triangle PQR similar to ∆ABC in which PQ = 8 cm. Also justify the construction.


Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×