हिंदी

Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are 2/3 of the corresponding sides of the first triangle. Give the justification of the construction. - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.

 

Construct a triangle with sides 5 cm, 4 cm and 6 cm. Then construct another triangle whose sides are `2/3` times the corresponding sides of first triangle.

 

 

उत्तर

Step 1

Draw a line segment AB = 4 cm. Taking point A as centre, draw an arc of 5 cm radius. Similarly, taking point B as its centre, draw an arc of 6 cm radius. These arcs will intersect each other at point C. Now, AC = 5 cm and BC = 6 cm and ΔABC is the required triangle.

Step 2

Draw a ray AX making an acute angle with line AB on the opposite side of vertex C.

Step 3

Locate 3 points A1, A2, A3 (as 3 is greater between 2 and 3) on line AX such that AA= A1A2 = A2A3.

Step 4

Join BA3 and draw a line through Aparallel to BA3 to intersect AB at point B'.

Step 5

Draw a line through B' parallel to the line BC to intersect AC at C'.

ΔAB'C' is the required triangle.

Justification

The construction can be justified by proving that

`AB' = 2/3AB, B'C'  = 2/3BC, AC' = 2/3 AC`

By construction, we have B’C’ || BC

∴ ∠AB'C'= ∠ABC (Corresponding angles)

In ΔAB'C' and ΔABC,

 ∠AB'C' = ∠ABC (Proved above)

 ∠B'AC' = ∠BAC (Proved above)

∴ ΔAB'C' ~ ΔABC (AA similarity criterion)

`=> (AB')/(AB) = (B'C')/(BC) = (AC')/(AC) ....(1)`

In ΔAA2B' and ΔAA3B,

∠A2AB' = ∠A3AB (Common)

∠AA2B' = ∠AA3B (Corresponding angles)

∴ ΔAA2B' ∼ ΔAA3B (AA similarity criterion)

`=> (AB')/(AB) = (`

`=> (AB')/(AB) = 2/3    ....(2)`

From equations (1) and (2), we obtain

`(AB')/(AB) = (B'C')/(BC) = (AC')/(AC) = 2/3`

`=>AB' = 2/3(AB), B'C' = 2/3(BC), AC' = 2/3(AC)`

This justifies the construction.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Constructions - Exercise 11.1 [पृष्ठ २२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 11 Constructions
Exercise 11.1 | Q 2 | पृष्ठ २२०
आरडी शर्मा Mathematics [English] Class 10
अध्याय 9 Constructions
Exercise 9.2 | Q 1 | पृष्ठ ९

संबंधित प्रश्न

Write down the equation of a line whose slope is 3/2 and which passes through point P, where P divides the line segment AB joining A(-2, 6) and B(3, -4) in the ratio 2 : 3.


ΔRST ~ ΔUAY, In ΔRST, RS = 6 cm, ∠S = 50°, ST = 7.5 cm. The corresponding sides of ΔRST and ΔUAY are in the ratio 5 : 4. Construct ΔUAY.


Construct a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60˚. Now construct another triangle whose sides are 5/7 times the corresponding sides of ΔABC.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose side are `1 1/2` times the corresponding sides of the isosceles triangle.

Give the justification of the construction


Draw a triangle ABC with side BC = 7 cm, ∠B = 45°, ∠A = 105°. Then, construct a triangle whose sides are `4/3 `times the corresponding side of ΔABC. Give the justification of the construction.


Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are `5/3` times the corresponding sides of the given triangle. Give the justification of the construction.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Draw a line segment of length 7 cm and divide it internally in the ratio 2 : 3.


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are `3/5` times the corresponding sides of the given triangle.


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also, justify your construction.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


Construct ∆PYQ such that, PY = 6.3 cm, YQ = 7.2 cm, PQ = 5.8 cm. If \[\frac{YZ}{YQ} = \frac{6}{5},\] then construct ∆XYZ similar to ∆PYQ.


If A(–14, –10), B(6, –2) is given, find the coordinates of the points which divide segment AB into four equal parts.


If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.


The line segment AB is divided into five congruent parts at P, Q, R and S such that A–P–Q–R–S–B. If point Q(12, 14) and S(4, 18) are given find the coordinates of A, P, R, B.


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are \[\frac{3}{5}\] times the corresponding sides of the given triangle.


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

______ number of tangents can be drawn to a circle from the point on the circle.


Choose the correct alternative:

∆ABC ∼ ∆AQR. `"AB"/"AQ" = 7/5`, then which of the following option is true?


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm. ∠D = 30°, ∠N = 20°, `"HP"/"ED" = 4/5`, then construct ΔRHP and ∆NED


To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that ∠BAX is an acute angle, then draw a ray BY parallel to AX and the points A1, A2, A3, ... and B1, B2, B3, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are ______.


To construct a triangle similar to a given ΔABC with its sides `3/7` of the corresponding sides of ΔABC, first draw a ray BX such that ∠CBX is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points B1, B2, B3, ... on BX at equal distances and next step is to join ______.


A rhombus ABCD in which AB = 4cm and ABC = 60o, divides it into two triangles say, ABC and ADC. Construct the triangle AB’C’ similar to triangle ABC with scale factor `2/3`. Select the correct figure.


A triangle ABC is such that BC = 6cm, AB = 4cm and AC = 5cm. For the triangle similar to this triangle with its sides equal to `3/4`th of the corresponding sides of ΔABC, correct figure is?


For ∆ABC in which BC = 7.5cm, ∠B =45° and AB - AC = 4, select the correct figure.


To divide a line segment PQ in the ratio 5 : 7, first a ray PX is drawn so that ∠QPX is an acute angle and then at equal distances points are marked on the ray PX such that the minimum number of these points is ______.


If you need to construct a triangle with point P as one of its vertices, which is the angle that you need to construct a side of the triangle?


If a triangle similar to given ΔABC with sides equal to `3/4` of the sides of ΔABC is to be constructed, then the number of points to be marked on ray BX is ______.


Construction of similar polygons is similar to that of construction of similar triangles. If you are asked to construct a parallelogram similar to a given parallelogram with a given scale factor, which of the given steps will help you construct a similar parallelogram?


The point W divides the line XY in the ratio m : n. Then, the ratio of lengths of the line segments XY : WX is ______.


To divide a line segment, the ratio of division must be ______.


Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor `5/3`.


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Draw a line segment of length 7.5 cm and divide it in the ratio 1:3.


Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×