हिंदी

∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that PQLTPQLT=34. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that `"PQ"/"LT" = 3/4`.

ज्यामितीय चित्र

उत्तर

Rough figure:

Steps of construction:

  1. Draw ΔPQR such that PQ = 4.2 cm, QR = 5.4 cm and PR = 4.8 cm.
  2. Draw a ray at point R making a suitable angle with seg RQ.
  3. Take equal parts RR1, R1R2, R2R3, R3R4 on ray RX.
  4. Join the points Q and R3.
  5. Draw seg TR4 || seg QR3.
  6. Draw seg LT || seg PQ.

Construction:

shaalaa.com

Notes

  • For drawing ΔPRQ of given measures = 1 mark
  • For drawing acute angle at point R = 0.5 mark
  • To mark points R1, R2, R3, R4 on ray RX at equal distance from point R = 0.5 mark
  • To join seg R3Q and to draw parallel seg R4T to seg R3Q = 0.5 mark
  • To draw parallel seg to PQ at point T = 0.5 mark
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Geometric Constructions - Practice Set 4.1 [पृष्ठ ९६]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 4 Geometric Constructions
Practice Set 4.1 | Q 2 | पृष्ठ ९६

संबंधित प्रश्न

ΔRST ~ ΔUAY, In ΔRST, RS = 6 cm, ∠S = 50°, ST = 7.5 cm. The corresponding sides of ΔRST and ΔUAY are in the ratio 5 : 4. Construct ΔUAY.


Construct the circumcircle and incircle of an equilateral triangle ABC with side 6 cm and centre O. Find the ratio of radii of circumcircle and incircle.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are `5/3` times the corresponding sides of the given triangle. Give the justification of the construction.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are `3/5` times the corresponding sides of the given triangle.


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also, justify your construction.


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB) = 3/5 `.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


If A(–14, –10), B(6, –2) is given, find the coordinates of the points which divide segment AB into four equal parts.


If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are \[\frac{3}{5}\] times the corresponding sides of the given triangle.


Δ AMT ∼ ΔAHE. In  Δ AMT, MA = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `(MA)/(HA) = 7/5`. construct  Δ AHE. 


Draw seg AB of length 9.7 cm. Take a point P on it such that A-P-B, AP = 3.5 cm. Construct a line MNsag AB through point P.


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

______ number of tangents can be drawn to a circle from the point on the circle.


Choose the correct alternative:


In the figure ΔABC ~ ΔADE then the ratio of their corresponding sides is ______


ΔPQR ~ ΔABC. In ΔPQR, PQ = 3.6cm, QR = 4 cm, PR = 4.2 cm. Ratio of the corresponding sides of triangle is 3 : 4, then construct ΔPQR and ΔABC


ΔAMT ~ ΔAHE. In ΔAMT, AM = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `"AM"/"HA" = 7/5`, then construct ΔAMT and ΔAHE


To divide a line segment AB in the ratio 5 : 7, first a ray AX is drawn so that ∠BAX is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that ∠BAX is an acute angle, then draw a ray BY parallel to AX and the points A1, A2, A3, ... and B1, B2, B3, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


For ∆ABC in which BC = 7.5cm, ∠B =45° and AB - AC = 4, select the correct figure.


Draw the line segment AB = 5cm. From the point A draw a line segment AD = 6cm making an angle of 60° with AB. Draw a perpendicular bisector of AD. Select the correct figure.


When a line segment is divided in the ratio 2 : 3, how many parts is it divided into?


The ratio of corresponding sides for the pair of triangles whose construction is given as follows: Triangle ABC of dimensions AB = 4cm, BC = 5 cm and ∠B= 60°.A ray BX is drawn from B making an acute angle with AB.5 points B1, B2, B3, B4 and B5 are located on the ray such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.

B4 is joined to A and a line parallel to B4A is drawn through B5 to intersect the extended line AB at A’.

Another line is drawn through A’ parallel to AC, intersecting the extended line BC at C’. Find the ratio of the corresponding sides of ΔABC and ΔA′BC′.


A point C divides a line segment AB in the ratio 5 : 6. The ratio of lengths AB: BC is ______.


What is the ratio `(AC)/(BC)` for the line segment AB following the construction method below?

Step 1: A ray is extended from A and 30 arcs of equal lengths are cut, cutting the ray at A1, A2,…A30

Step 2: A line is drawn from A30 to B and a line parallel to A30B is drawn, passing through the point A17 and meet AB at C.


The basic principle used in dividing a line segment is ______.


By geometrical construction, it is possible to divide a line segment in the ratio `sqrt(3) : 1/sqrt(3)`.


Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor `5/3`.


Draw a line segment AB of length 10 cm and divide it internally in the ratio of 2:5 Justify the division of line segment AB.


Draw a line segment of length 7.5 cm and divide it in the ratio 1:3.


Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×