English

∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, ACLN=47. Construct ∆ABC and ∆LBN. - Geometry Mathematics 2

Advertisements
Advertisements

Question

∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.

Sum

Solution

As shown in the figure,

Let B – C – N and B – A – L.

∆ABC ~ ∆LBN  ...[Given]

∴ ∠ABC ≅ ∠LBN  ...[Corresponding angles of similar triangles]

`"AB"/"LB"="BC"/"BN"="AC"/"LN"`  ...(i) [Corresponding sides of similar triangles]

But, `"AC"/"LN"=4/7`  ...(ii) [Given]

∴ `"AB"/"LB"="BC"/"BN"="AC"/"LN"`  ...[From(i) and (ii)]

∴ Sides of ∆LBN are longer than corresponding sides of ∆ABC.

∴ If seg BC is divided into 4 equal parts, then seg BN will be 7 times each part of seg BC.

So, if we construct ∆ABC, point N will be on side BC, at a distance equal to 7 parts from B.

Now, point L is the point of intersection of ray BA and a line through N, parallel to AC.

∆LBN is the required triangle similar to ∆ABC.

Steps of construction:

  1. Draw ∆ABC of given measure. Draw ray BD making an acute angle with side BC.
  2. Taking convenient distance on compass, mark 7 points B1, B2, B3, B4, B5, B6 and B7 such that BB1 = B1B2 = B2BB3= B44 = B4B5 = B5B6 = B6B7.
  3. Join B4C. Draw line parallel to B4C through B7 to intersects ray BC at N.
  4. Draw a line parallel to side AC through N. Name the point of intersection of this line and ray BA as L.

∆LBN is the required triangle similar to ∆ABC.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Geometric Constructions - Problem Set 4 [Page 99]

RELATED QUESTIONS

Construct the circumcircle and incircle of an equilateral triangle ABC with side 6 cm and centre O. Find the ratio of radii of circumcircle and incircle.


Construct a Δ ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ΔAB’C’ similar to ΔABC with base AB’ = 8 cm.


Draw a triangle ABC with BC = 7 cm, ∠B = 45° and ∠A = 105°. Then construct a triangle whose sides are`4/5` times the corresponding sides of ΔABC.


Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.

 


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose side are `1 1/2` times the corresponding sides of the isosceles triangle.

Give the justification of the construction


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are `3/5` times the corresponding sides of the given triangle.


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Construct a triangle similar to a given ΔABC such that each of its sides is (2/3)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.


Draw a right triangle ABC in which AC = AB = 4.5 cm and ∠A = 90°. Draw a triangle similar to ΔABC with its sides equal to (5/4)th of the corresponding sides of ΔABC.


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are 3/2 times the corresponding sides of the isosceles triangle.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB) = 3/5 `.


Draw a triangle ABC with side BC = 6 cm, ∠C = 30° and ∠A = 105°. Then construct another triangle whose sides are `2/3` times the corresponding sides of ΔABC.

 


∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that `"PQ"/"LT" = 3/4`.


Construct ∆PYQ such that, PY = 6.3 cm, YQ = 7.2 cm, PQ = 5.8 cm. If \[\frac{YZ}{YQ} = \frac{6}{5},\] then construct ∆XYZ similar to ∆PYQ.


Find the ratio in which point T(–1, 6)divides the line segment joining the points P(–3, 10) and Q(6, –8).


The line segment AB is divided into five congruent parts at P, Q, R and S such that A–P–Q–R–S–B. If point Q(12, 14) and S(4, 18) are given find the coordinates of A, P, R, B.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB)=3/5`.

 

 

Δ SHR ∼ Δ SVU. In Δ SHR, SH = 4.5 cm, HR = 5.2 cm, SR = 5.8 cm and
SHSV = 53 then draw Δ SVU.


Find the ratio in which the segment joining the points (1, –3) and (4, 5) is divided by the x-axis? Also, find the coordinates of this point on the x-axis.


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

______ number of tangents can be drawn to a circle from the point on the circle.


Choose the correct alternative:

ΔPQR ~ ΔABC, `"PR"/"AC" = 5/7`, then


Construct an equilateral ∆ABC with side 5 cm. ∆ABC ~ ∆LMN, ratio the corresponding sides of triangle is 6 : 7, then construct ΔLMN and ΔABC


Point P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1. If P lies on the line x - y + 2 = 0, then value of k is ______.


To divide a line segment AB in the ratio p : q (p, q are positive integers), draw a ray AX so that ∠BAX is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 5 : 7, first a ray AX is drawn so that ∠BAX is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 4 : 7, a ray AX is drawn first such that ∠BAX is an acute angle and then points A1, A2, A3, .... are located at equal distances on the ray AX and the point B is joined to ______.


For ∆ABC in which BC = 7.5cm, ∠B =45° and AB - AC = 4, select the correct figure.


A point C divides a line segment AB in the ratio 5 : 6. The ratio of lengths AB: BC is ______.


The point W divides the line XY in the ratio m : n. Then, the ratio of lengths of the line segments XY : WX is ______.


What is the ratio `(AC)/(BC)` for the line segment AB following the construction method below?

Step 1: A ray is extended from A and 30 arcs of equal lengths are cut, cutting the ray at A1, A2,…A30

Step 2: A line is drawn from A30 to B and a line parallel to A30B is drawn, passing through the point A17 and meet AB at C.


To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Two line segments AB and AC include an angle of 60° where AB = 5 cm and AC = 7 cm. Locate points P and Q on AB and AC, respectively such that AP = `3/4` AB and AQ = `1/4` AC. Join P and Q and measure the length PQ.


Draw a triangle ABC in which AB = 4 cm, BC = 6 cm and AC = 9 cm. Construct a triangle similar to ∆ABC with scale factor `3/2`. Justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.


Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.


Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×