English

The Line Segment Ab is Divided into Five Congruent Parts at P, Q, R and S Such that A–P–Q–R–S–B. If Point Q(12, 14) and S(4, 18) Are Given Find the Coordinates of A, P, R, B. - Geometry Mathematics 2

Advertisements
Advertisements

Question

The line segment AB is divided into five congruent parts at P, Q, R and S such that A–P–Q–R–S–B. If point Q(12, 14) and S(4, 18) are given find the coordinates of A, P, R, B.

Sum

Solution

Points P, Q, R and S divide seg AB in five congruent parts.

Let A x1, y1), B(x2, y2), P(x3, y3) and R(x4, y4) be the given points.

Point R is the midpoint of segment QS. 

By midpoint formula,

x co-ordinate of R = `(12 + 4)/2 = 16/2` = 8

y co-ordinate of R = `(14 + 18)/2 = 32/2` = 16

∴ co-ordinates of R are (8, 16).
Point Q is the midpoint of seg PR.
By midpoint formula,
x co-ordinate of Q = `(x_3 + 8)/2`
∴ 12 = `(x_3 + 8)/2`
∴ 24 = (x3 + 8)
∴ x3 = 16
y co-ordinate of Q = `(y_3 + 16)/2`
∴ 14 = `(y_3 + 16)/2`
∴ 28 = y + 16
∴ y3 = 12
∴ P(x3, y3 ) = (16, 12)
∴ co-ordinates of P are (16, 12).
Point P is the midpoint of seg AQ.
By midpoint formula,
x co-ordinate of P = `(x_1 + 12)/2`
∴ 16 = `(x_1 + 12)/2`
∴ 32 = x1 + 12
∴  x1 = 20
y co-ordinate of P = `(y_1 + 14)/2`
∴ 12 = `(y_1 + 14)/2`
∴ 24 = y1 + 14
∴ y1 = 10
∴ A(x1, y1) = (20, 10)
∴ co-ordinates of A are (20, 10). Point S is the midpoint of seg RB.
By midpoint formula,
x co-ordinate of S = `(x_2 + 8)/2`
∴ 4 = `(x_2 + 8)/2`
∴ 8 = x2 + 8
∴  x2 = 0
y co-ordinate of S = `(y_2 + 16)/2`
∴ 18 = `(y_2 + 16)/2`
∴ 36 = y2 + 16
∴ y2 = 20
∴ B (x2, y2) = (0, 20)
∴ co-ordinates of B are (0, 20).
∴ The co-ordinates of points A, P, R and B are (20, 10), (16, 12), (8, 16) and (0, 20) respectively.
shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Co-ordinate Geometry - Problem Set 5 [Page 123]

RELATED QUESTIONS

Write down the equation of a line whose slope is 3/2 and which passes through point P, where P divides the line segment AB joining A(-2, 6) and B(3, -4) in the ratio 2 : 3.


Find the ratio in which the line segment joining the points A(3,- 3) and B(- 2, 7) is divided by x-axis. Also find the coordinates of the point of division.


 

Construct a triangle ABC in which BC = 6 cm, AB = 5 cm and ∠ABC = 60°. Then construct another triangle whose sides are`3/4` times the corresponding sides of ΔABC.

 

Construct a triangle ABC with BC = 7 cm, ∠B = 60° and AB = 6 cm. Construct another triangle whose sides are `3/4` times the corresponding sides of ∆ABC.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Construct an isosceles triangle with base 8 cm and altitude 4 cm. Construct another triangle whose sides are `2/3` times the corresponding sides of the isosceles triangle.


Draw a line segment of length 7 cm and divide it internally in the ratio 2 : 3.


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Draw a right triangle ABC in which AC = AB = 4.5 cm and ∠A = 90°. Draw a triangle similar to ΔABC with its sides equal to (5/4)th of the corresponding sides of ΔABC.


Draw a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm. Then construct another triangle whose sides are 5/3th times the corresponding sides of the given triangle.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are 3/4 times the corresponding sides of the first triangle.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that `"PQ"/"LT" = 3/4`.


Given A(4, –3), B(8, 5). Find the coordinates of the point that divides segment AB in the ratio 3 : 1.


Δ AMT ∼ ΔAHE. In  Δ AMT, MA = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `(MA)/(HA) = 7/5`. construct  Δ AHE. 


Draw seg AB of length 9.7 cm. Take a point P on it such that A-P-B, AP = 3.5 cm. Construct a line MNsag AB through point P.


Choose the correct alternative:


In the figure ΔABC ~ ΔADE then the ratio of their corresponding sides is ______


Draw seg AB of length 9 cm and divide it in the ratio 3 : 2


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm, ∠D = 30°, ∠N = 20° and `"HP"/"ED" = 4/5`. Then construct ΔRHP and ΔNED


ΔPQR ~ ΔABC. In ΔPQR, PQ = 3.6cm, QR = 4 cm, PR = 4.2 cm. Ratio of the corresponding sides of triangle is 3 : 4, then construct ΔPQR and ΔABC


Construct an equilateral ∆ABC with side 5 cm. ∆ABC ~ ∆LMN, ratio the corresponding sides of triangle is 6 : 7, then construct ΔLMN and ΔABC


If the point P (6, 7) divides the segment joining A(8, 9) and B(1, 2) in some ratio, find that ratio

Solution:

Point P divides segment AB in the ratio m: n.

A(8, 9) = (x1, y1), B(1, 2 ) = (x2, y2) and P(6, 7) = (x, y)

Using Section formula of internal division,

∴ 7 = `("m"(square) - "n"(9))/("m" + "n")`

∴ 7m + 7n = `square` + 9n

∴ 7m – `square` = 9n – `square`

∴ `square` = 2n

∴ `"m"/"n" = square`


To divide a line segment AB in the ratio p : q (p, q are positive integers), draw a ray AX so that ∠BAX is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 5 : 7, first a ray AX is drawn so that ∠BAX is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is ______.


A rhombus ABCD in which AB = 4cm and ABC = 60o, divides it into two triangles say, ABC and ADC. Construct the triangle AB’C’ similar to triangle ABC with scale factor `2/3`. Select the correct figure.


A triangle ABC is such that BC = 6cm, AB = 4cm and AC = 5cm. For the triangle similar to this triangle with its sides equal to `3/4`th of the corresponding sides of ΔABC, correct figure is?


For ∆ABC in which BC = 7.5cm, ∠B =45° and AB - AC = 4, select the correct figure.


If you need to construct a triangle with point P as one of its vertices, which is the angle that you need to construct a side of the triangle?


If a triangle similar to given ΔABC with sides equal to `3/4` of the sides of ΔABC is to be constructed, then the number of points to be marked on ray BX is ______.


Construction of similar polygons is similar to that of construction of similar triangles. If you are asked to construct a parallelogram similar to a given parallelogram with a given scale factor, which of the given steps will help you construct a similar parallelogram?


A point C divides a line segment AB in the ratio 5 : 6. The ratio of lengths AB: BC is ______.


What is the ratio `(AC)/(BC)` for the following construction: A line segment AB is drawn. A single ray is extended from A and 12 arcs of equal lengths are cut, cutting the ray at A1, A2… A12.A line is drawn from A12 to B and a line parallel to A12B is drawn, passing through the point A6 and cutting AB at C.


To divide a line segment, the ratio of division must be ______.


To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Draw a line segment of length 7.5 cm and divide it in the ratio 1:3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×