English

ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm, ∠D = 30°, ∠N = 20° and HPED=45. Then construct ΔRHP and ΔNED - Geometry Mathematics 2

Advertisements
Advertisements

Question

ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm, ∠D = 30°, ∠N = 20° and `"HP"/"ED" = 4/5`. Then construct ΔRHP and ΔNED

Chart
Diagram

Solution


In ∆NED, ∠D = 30°

and ∠N = 20°   ......(i) [Given]

∴ ∠E = 130°    .....(ii) [Remaining angle of a triangle]

∆RHP ∼ ∆NED

∴ `"RH"/"NE" = "HP"/"ED" = "PR"/"DN"`  .....[Corresponding sides of similar triangles]

∴ `"RH"/7 = 4/5`   ......[Given]

∴ RH = `(4 xx 7)/5` = 5.6 cm

Also, ∠R = ∠N, ∠H = ∠E, ∠P = ∠D  ......(iii) [Corresponding angles of similar triangles]

∴ ∠R = 20°, ∠H = 130°, ∠P = 30°   ......[From (i),(ii) and (iii)]



Steps of Construction:

  ∆NED ∆RHP
i. Draw seg NE of 7 cm Draw seg RH of 5.6 cm
ii. Draw a ray NA and EB such that ∠ANE = 20° and ∠BEN = 130°. Draw a ray RC and HD such that ∠CRH = 20° and ∠DHR = 130°.
iii. Name the point of intersection of rays D. Name the point of intersection of rays P.
shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Geometric Constructions - Q.3 (B)

APPEARS IN

SCERT Maharashtra Geometry (Mathematics 2) [English] 10 Standard SSC
Chapter 4 Geometric Constructions
Q.3 (B) | Q 2

RELATED QUESTIONS

ΔRST ~ ΔUAY, In ΔRST, RS = 6 cm, ∠S = 50°, ST = 7.5 cm. The corresponding sides of ΔRST and ΔUAY are in the ratio 5 : 4. Construct ΔUAY.


Construct the circumcircle and incircle of an equilateral triangle ABC with side 6 cm and centre O. Find the ratio of radii of circumcircle and incircle.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose side are `1 1/2` times the corresponding sides of the isosceles triangle.

Give the justification of the construction


Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are `5/3` times the corresponding sides of the given triangle. Give the justification of the construction.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Determine a point which divides a line segment of length 12 cm internally in the ratio 2 : 3 Also, justify your construction.


Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to a given ΔXYZ with its sides equal to (3/4)th of the corresponding sides of ΔXYZ. Write the steps of construction.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a triangle ABC with side BC = 6 cm, ∠C = 30° and ∠A = 105°. Then construct another triangle whose sides are `2/3` times the corresponding sides of ΔABC.

 


∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.


If A(–14, –10), B(6, –2) is given, find the coordinates of the points which divide segment AB into four equal parts.


Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.


Choose the correct alternative:

ΔPQR ~ ΔABC, `"PR"/"AC" = 5/7`, then


Choose the correct alternative:

∆ABC ∼ ∆AQR. `"AB"/"AQ" = 7/5`, then which of the following option is true?


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm. ∠D = 30°, ∠N = 20°, `"HP"/"ED" = 4/5`, then construct ΔRHP and ∆NED


ΔABC ~ ΔPBR, BC = 8 cm, AC = 10 cm , ∠B = 90°, `"BC"/"BR" = 5/4` then construct ∆ABC and ΔPBR


To divide a line segment AB in the ratio p : q (p, q are positive integers), draw a ray AX so that ∠BAX is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is ______.


To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that ∠BAX is an acute angle, then draw a ray BY parallel to AX and the points A1, A2, A3, ... and B1, B2, B3, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


A triangle ABC is such that BC = 6cm, AB = 4cm and AC = 5cm. For the triangle similar to this triangle with its sides equal to `3/4`th of the corresponding sides of ΔABC, correct figure is?


For ∆ABC in which BC = 7.5cm, ∠B =45° and AB - AC = 4, select the correct figure.


The ratio of corresponding sides for the pair of triangles whose construction is given as follows: Triangle ABC of dimensions AB = 4cm, BC = 5 cm and ∠B= 60°.A ray BX is drawn from B making an acute angle with AB.5 points B1, B2, B3, B4 and B5 are located on the ray such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.

B4 is joined to A and a line parallel to B4A is drawn through B5 to intersect the extended line AB at A’.

Another line is drawn through A’ parallel to AC, intersecting the extended line BC at C’. Find the ratio of the corresponding sides of ΔABC and ΔA′BC′.


If the perpendicular distance between AP is given, which vertices of the similar triangle would you find first?


If a triangle similar to given ΔABC with sides equal to `3/4` of the sides of ΔABC is to be constructed, then the number of points to be marked on ray BX is ______.


What is the ratio `(AC)/(BC)` for the following construction: A line segment AB is drawn. A single ray is extended from A and 12 arcs of equal lengths are cut, cutting the ray at A1, A2… A12.A line is drawn from A12 to B and a line parallel to A12B is drawn, passing through the point A6 and cutting AB at C.


The basic principle used in dividing a line segment is ______.


Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm and ∠ABC = 60°, divide it into triangles BCD and ABD by the diagonal BD. Construct the triangle BD' C' similar to ∆BDC with scale factor `4/3`. Draw the line segment D'A' parallel to DA where A' lies on extended side BA. Is A'BC'D' a parallelogram?


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Draw a line segment AB of length 10 cm and divide it internally in the ratio of 2:5 Justify the division of line segment AB.


Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×