हिंदी

∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, ACLN=47. Construct ∆ABC and ∆LBN. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.

योग

उत्तर

As shown in the figure,

Let B – C – N and B – A – L.

∆ABC ~ ∆LBN  ...[Given]

∴ ∠ABC ≅ ∠LBN  ...[Corresponding angles of similar triangles]

`"AB"/"LB"="BC"/"BN"="AC"/"LN"`  ...(i) [Corresponding sides of similar triangles]

But, `"AC"/"LN"=4/7`  ...(ii) [Given]

∴ `"AB"/"LB"="BC"/"BN"="AC"/"LN"`  ...[From(i) and (ii)]

∴ Sides of ∆LBN are longer than corresponding sides of ∆ABC.

∴ If seg BC is divided into 4 equal parts, then seg BN will be 7 times each part of seg BC.

So, if we construct ∆ABC, point N will be on side BC, at a distance equal to 7 parts from B.

Now, point L is the point of intersection of ray BA and a line through N, parallel to AC.

∆LBN is the required triangle similar to ∆ABC.

Steps of construction:

  1. Draw ∆ABC of given measure. Draw ray BD making an acute angle with side BC.
  2. Taking convenient distance on compass, mark 7 points B1, B2, B3, B4, B5, B6 and B7 such that BB1 = B1B2 = B2BB3= B44 = B4B5 = B5B6 = B6B7.
  3. Join B4C. Draw line parallel to B4C through B7 to intersects ray BC at N.
  4. Draw a line parallel to side AC through N. Name the point of intersection of this line and ray BA as L.

∆LBN is the required triangle similar to ∆ABC.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Geometric Constructions - Problem Set 4 [पृष्ठ ९९]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 4 Geometric Constructions
Problem Set 4 | Q 7 | पृष्ठ ९९

संबंधित प्रश्न

Construct a Δ ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ΔAB’C’ similar to ΔABC with base AB’ = 8 cm.


Construct a triangle ABC with BC = 7 cm, ∠B = 60° and AB = 6 cm. Construct another triangle whose sides are `3/4` times the corresponding sides of ∆ABC.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose side are `1 1/2` times the corresponding sides of the isosceles triangle.

Give the justification of the construction


Draw a triangle ABC with side BC = 7 cm, ∠B = 45°, ∠A = 105°. Then, construct a triangle whose sides are `4/3 `times the corresponding side of ΔABC. Give the justification of the construction.


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also, justify your construction.


Construct a triangle similar to a given ΔABC such that each of its sides is (2/3)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.


Construct a right triangle in which the sides, (other than the hypotenuse) are of length 6 cm and 8 cm. Then construct another triangle, whose sides are `3/5` times the corresponding sides of the given triangle.


∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that `"PQ"/"LT" = 3/4`.


∆AMT ~ ∆AHE. In ∆AMT, AM = 6.3 cm, ∠TAM = 50°, AT = 5.6 cm. `"AM"/"AH" = 7/5`. Construct ∆AHE.


Find the ratio in which point T(–1, 6)divides the line segment joining the points P(–3, 10) and Q(6, –8).


Find the ratio in which point P(k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.


Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB)=3/5`.

 

 

Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are \[\frac{3}{5}\] times the corresponding sides of the given triangle.


Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


Choose the correct alternative:

∆ABC ∼ ∆AQR. `"AB"/"AQ" = 7/5`, then which of the following option is true?


Draw seg AB of length 9 cm and divide it in the ratio 3 : 2


ΔAMT ~ ΔAHE. In ΔAMT, AM = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `"AM"/"HA" = 7/5`, then construct ΔAMT and ΔAHE


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm. ∠D = 30°, ∠N = 20°, `"HP"/"ED" = 4/5`, then construct ΔRHP and ∆NED


To divide a line segment AB in the ratio 5 : 6, draw a ray AX such that ∠BAX is an acute angle, then draw a ray BY parallel to AX and the points A1, A2, A3, ... and B1, B2, B3, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are ______.


To construct a triangle similar to a given ΔABC with its sides `8/5` of the corresponding sides of ΔABC draw a ray BX such that ∠CBX is an acute angle and X is on the opposite side of A with respect to BC. Then minimum number of points to be located at equal distances on ray BX is ______.


A triangle ABC is such that BC = 6cm, AB = 4cm and AC = 5cm. For the triangle similar to this triangle with its sides equal to `3/4`th of the corresponding sides of ΔABC, correct figure is?


If I ask you to construct ΔPQR ~ ΔABC exactly (when we say exactly, we mean the exact relative positions of the triangles) as given in the figure, (Assuming I give you the dimensions of ΔABC and the Scale Factor for ΔPQR) what additional information would you ask for?


If a triangle similar to given ΔABC with sides equal to `3/4` of the sides of ΔABC is to be constructed, then the number of points to be marked on ray BX is ______.


What is the ratio `(AC)/(BC)` for the following construction: A line segment AB is drawn. A single ray is extended from A and 12 arcs of equal lengths are cut, cutting the ray at A1, A2… A12.A line is drawn from A12 to B and a line parallel to A12B is drawn, passing through the point A6 and cutting AB at C.


The basic principle used in dividing a line segment is ______.


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.


Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×