मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, ACLN=47. Construct ∆ABC and ∆LBN. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.

बेरीज

उत्तर

As shown in the figure,

Let B – C – N and B – A – L.

∆ABC ~ ∆LBN  ...[Given]

∴ ∠ABC ≅ ∠LBN  ...[Corresponding angles of similar triangles]

`"AB"/"LB"="BC"/"BN"="AC"/"LN"`  ...(i) [Corresponding sides of similar triangles]

But, `"AC"/"LN"=4/7`  ...(ii) [Given]

∴ `"AB"/"LB"="BC"/"BN"="AC"/"LN"`  ...[From(i) and (ii)]

∴ Sides of ∆LBN are longer than corresponding sides of ∆ABC.

∴ If seg BC is divided into 4 equal parts, then seg BN will be 7 times each part of seg BC.

So, if we construct ∆ABC, point N will be on side BC, at a distance equal to 7 parts from B.

Now, point L is the point of intersection of ray BA and a line through N, parallel to AC.

∆LBN is the required triangle similar to ∆ABC.

Steps of construction:

  1. Draw ∆ABC of given measure. Draw ray BD making an acute angle with side BC.
  2. Taking convenient distance on compass, mark 7 points B1, B2, B3, B4, B5, B6 and B7 such that BB1 = B1B2 = B2BB3= B44 = B4B5 = B5B6 = B6B7.
  3. Join B4C. Draw line parallel to B4C through B7 to intersects ray BC at N.
  4. Draw a line parallel to side AC through N. Name the point of intersection of this line and ray BA as L.

∆LBN is the required triangle similar to ∆ABC.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Geometric Constructions - Problem Set 4 [पृष्ठ ९९]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 4 Geometric Constructions
Problem Set 4 | Q 7 | पृष्ठ ९९

संबंधित प्रश्‍न

ΔRST ~ ΔUAY, In ΔRST, RS = 6 cm, ∠S = 50°, ST = 7.5 cm. The corresponding sides of ΔRST and ΔUAY are in the ratio 5 : 4. Construct ΔUAY.


Construct a Δ ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ΔAB’C’ similar to ΔABC with base AB’ = 8 cm.


Find the ratio in which the line segment joining the points A(3,- 3) and B(- 2, 7) is divided by x-axis. Also find the coordinates of the point of division.


Construct a triangle ABC with BC = 7 cm, ∠B = 60° and AB = 6 cm. Construct another triangle whose sides are `3/4` times the corresponding sides of ∆ABC.


Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are `7/5` of the corresponding sides of the first triangle. Give the justification of the construction.


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose side are `1 1/2` times the corresponding sides of the isosceles triangle.

Give the justification of the construction


Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5


Construct an isosceles triangle with base 8 cm and altitude 4 cm. Construct another triangle whose sides are `2/3` times the corresponding sides of the isosceles triangle.


Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.


Construct a triangle similar to a given ΔABC such that each of its sides is (5/7)th  of the corresponding sides of Δ ABC. It is given that AB = 5 cm, BC = 7 cm and ∠ABC = 50°.


Construct a triangle similar to a given ΔABC such that each of its sides is (2/3)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Construct a triangle similar to a given ΔXYZ with its sides equal to (3/4)th of the corresponding sides of ΔXYZ. Write the steps of construction.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


Draw a triangle ABC with side BC = 6 cm, ∠C = 30° and ∠A = 105°. Then construct another triangle whose sides are `2/3` times the corresponding sides of ΔABC.

 


∆AMT ~ ∆AHE. In ∆AMT, AM = 6.3 cm, ∠TAM = 50°, AT = 5.6 cm. `"AM"/"AH" = 7/5`. Construct ∆AHE.


If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.


Given A(4, –3), B(8, 5). Find the coordinates of the point that divides segment AB in the ratio 3 : 1.


Find the co-ordinates of the centroid of the Δ PQR, whose vertices are P(3, –5), Q(4, 3) and R(11, –4) 


Find the ratio in which the segment joining the points (1, –3) and (4, 5) is divided by the x-axis? Also, find the coordinates of this point on the x-axis.


Choose the correct alternative:

∆ABC ∼ ∆AQR. `"AB"/"AQ" = 7/5`, then which of the following option is true?


∆ABC ~ ∆PBQ. In ∆ABC, AB = 3 cm, ∠B = 90°, BC = 4 cm. Ratio of the corresponding sides of two triangles is 7 : 4. Then construct ∆ABC and ∆PBQ


ΔABC ~ ΔPBR, BC = 8 cm, AC = 10 cm , ∠B = 90°, `"BC"/"BR" = 5/4` then construct ∆ABC and ΔPBR


To construct a triangle similar to a given ΔABC with its sides `3/7` of the corresponding sides of ΔABC, first draw a ray BX such that ∠CBX is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points B1, B2, B3, ... on BX at equal distances and next step is to join ______.


To construct a triangle similar to a given ΔABC with its sides `8/5` of the corresponding sides of ΔABC draw a ray BX such that ∠CBX is an acute angle and X is on the opposite side of A with respect to BC. Then minimum number of points to be located at equal distances on ray BX is ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


When a line segment is divided in the ratio 2 : 3, how many parts is it divided into?


The ratio of corresponding sides for the pair of triangles whose construction is given as follows: Triangle ABC of dimensions AB = 4cm, BC = 5 cm and ∠B= 60°.A ray BX is drawn from B making an acute angle with AB.5 points B1, B2, B3, B4 and B5 are located on the ray such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.

B4 is joined to A and a line parallel to B4A is drawn through B5 to intersect the extended line AB at A’.

Another line is drawn through A’ parallel to AC, intersecting the extended line BC at C’. Find the ratio of the corresponding sides of ΔABC and ΔA′BC′.


If I ask you to construct ΔPQR ~ ΔABC exactly (when we say exactly, we mean the exact relative positions of the triangles) as given in the figure, (Assuming I give you the dimensions of ΔABC and the Scale Factor for ΔPQR) what additional information would you ask for?


The point W divides the line XY in the ratio m : n. Then, the ratio of lengths of the line segments XY : WX is ______.


To construct a triangle similar to a given ∆ABC with its sides `7/3` of the corresponding sides of ∆ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, ...., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C' is drawn parallel to B3C where C' lies on BC produced. Finally, line segment A'C' is drawn parallel to AC.


Draw a line segment of length 7 cm. Find a point P on it which divides it in the ratio 3:5.


Draw a right triangle ABC in which BC = 12 cm, AB = 5 cm and ∠B = 90°. Construct a triangle similar to it and of scale factor `2/3`. Is the new triangle also a right triangle?


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Draw a line segment AB of length 10 cm and divide it internally in the ratio of 2:5 Justify the division of line segment AB.


Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×