Advertisements
Advertisements
प्रश्न
If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.
उत्तर
Let the points \[P\left( x_1 , y_1 \right), Q\left( x_2 , y_2 \right), R\left( x_3 , y_3 \right) \text { and } S\left( x_4 , y_4 \right)\] be the points which divide the line segment AB into 5 equal parts.
\[\frac{AP}{PB} = \frac{AP}{PQ + QR + RS} = \frac{AP}{4AP} = \frac{1}{4}\]
\[x_1 = \left( \frac{1 \times 0 + 4 \times 20}{1 + 4} \right) = 16\]
\[ y_1 = \left( \frac{1 \times 20 + 4 \times 10}{1 + 4} \right) = 12\]
\[P\left( x_1 , y_1 \right) = \left( 16, 12 \right)\]
\[\frac{PQ}{QB} = \frac{PQ}{QR + RS + SB} = \frac{PQ}{PQ + PQ + PQ} = \frac{PQ}{3PQ} = \frac{1}{3}\]
\[x_2 = \left( \frac{1 \times 0 + 3 \times 16}{1 + 3} \right) = 12\]
\[ y_2 = \left( \frac{1 \times 20 + 3 \times 12}{1 + 3} \right) = 14\]
\[Q\left( x_2 , y_2 \right) = \left( 12, 14 \right)\]
\[\frac{QR}{RB} = \frac{QR}{RS + SB} = \frac{QR}{QR + QR} = \frac{QR}{2QR} = \frac{1}{2}\]
\[x_3 = \left( \frac{1 \times 0 + 2 \times 12}{1 + 2} \right) = 8\]
\[ y_3 = \left( \frac{1 \times 20 + 2 \times 14}{1 + 2} \right) = 16\]
\[R\left( x_3 , y_3 \right) = \left( 8, 16 \right)\]
S is the midpoint of RB so, using the midpoint formula
\[x_4 = \frac{8 + 0}{2} = 4\]
\[ y_4 = \frac{16 + 20}{2} = 18\]
\[S\left( x_4 , y_4 \right) = \left( 4, 18 \right)\]
So, the points
\[P\left( x_1 , y_1 \right) = \left( 16, 12 \right)\]
\[ Q\left( x_2 , y_2 \right) = \left( 12, 14 \right)\]
\[R\left( x_3 , y_3 \right) = \left( 8, 16 \right)\]
\[S\left( x_4 , y_4 \right) = \left( 4, 18 \right)\]
संबंधित प्रश्न
Construct the circumcircle and incircle of an equilateral triangle ABC with side 6 cm and centre O. Find the ratio of radii of circumcircle and incircle.
Construct a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60˚. Now construct another triangle whose sides are 5/7 times the corresponding sides of ΔABC.
Construct a Δ ABC in which AB = 6 cm, ∠A = 30° and ∠B = 60°, Construct another ΔAB’C’ similar to ΔABC with base AB’ = 8 cm.
Draw a triangle ABC with BC = 7 cm, ∠B = 45° and ∠A = 105°. Then construct a triangle whose sides are`4/5` times the corresponding sides of ΔABC.
Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are `7/5` of the corresponding sides of the first triangle. Give the justification of the construction.
Draw a triangle ABC with side BC = 7 cm, ∠B = 45°, ∠A = 105°. Then, construct a triangle whose sides are `4/3 `times the corresponding side of ΔABC. Give the justification of the construction.
Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are `5/3` times the corresponding sides of the given triangle. Give the justification of the construction.
Draw a line segment of length 7 cm and divide it internally in the ratio 2 : 3.
Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.
Construct a triangle similar to a given ΔABC such that each of its sides is (5/7)th of the corresponding sides of Δ ABC. It is given that AB = 5 cm, BC = 7 cm and ∠ABC = 50°.
Construct a triangle similar to a given ΔABC such that each of its sides is (2/3)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.
Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.
Construct a triangle similar to a given ΔXYZ with its sides equal to (3/4)th of the corresponding sides of ΔXYZ. Write the steps of construction.
Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that `(AP)/(AB) = 3/5 `.
Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\] of the corresponding sides of ∆ABC ?
∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \[\frac{AC}{LN} = \frac{4}{7}\]. Construct ∆ABC and ∆LBN.
Find the ratio in which point T(–1, 6)divides the line segment joining the points P(–3, 10) and Q(6, –8).
If A(–14, –10), B(6, –2) is given, find the coordinates of the points which divide segment AB into four equal parts.
Points P and Q trisect the line segment joining the points A(−2, 0) and B(0, 8) such that P is near to A. Find the coordinates of points P and Q.
Choose the correct alternative:
______ number of tangents can be drawn to a circle from the point on the circle.
Choose the correct alternative:
∆ABC ∼ ∆AQR. `"AB"/"AQ" = 7/5`, then which of the following option is true?
Draw seg AB of length 9 cm and divide it in the ratio 3 : 2
∆ABC ~ ∆PBQ. In ∆ABC, AB = 3 cm, ∠B = 90°, BC = 4 cm. Ratio of the corresponding sides of two triangles is 7 : 4. Then construct ∆ABC and ∆PBQ
ΔAMT ~ ΔAHE. In ΔAMT, AM = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `"AM"/"HA" = 7/5`, then construct ΔAMT and ΔAHE
Point P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1. If P lies on the line x - y + 2 = 0, then value of k is ______.
To divide a line segment AB in the ratio 4 : 7, a ray AX is drawn first such that ∠BAX is an acute angle and then points A1, A2, A3, .... are located at equal distances on the ray AX and the point B is joined to ______.
A rhombus ABCD in which AB = 4cm and ABC = 60o, divides it into two triangles say, ABC and ADC. Construct the triangle AB’C’ similar to triangle ABC with scale factor `2/3`. Select the correct figure.
When a line segment is divided in the ratio 2 : 3, how many parts is it divided into?
If I ask you to construct ΔPQR ~ ΔABC exactly (when we say exactly, we mean the exact relative positions of the triangles) as given in the figure, (Assuming I give you the dimensions of ΔABC and the Scale Factor for ΔPQR) what additional information would you ask for?
The image of construction of A’C’B a similar triangle of ΔACB is given below. Then choose the correct option.
A point C divides a line segment AB in the ratio 5 : 6. The ratio of lengths AB: BC is ______.
The point W divides the line XY in the ratio m : n. Then, the ratio of lengths of the line segments XY : WX is ______.
What is the ratio `(AC)/(BC)` for the line segment AB following the construction method below?
Step 1: A ray is extended from A and 30 arcs of equal lengths are cut, cutting the ray at A1, A2,…A30
Step 2: A line is drawn from A30 to B and a line parallel to A30B is drawn, passing through the point A17 and meet AB at C.
The basic principle used in dividing a line segment is ______.
Two line segments AB and AC include an angle of 60° where AB = 5 cm and AC = 7 cm. Locate points P and Q on AB and AC, respectively such that AP = `3/4` AB and AQ = `1/4` AC. Join P and Q and measure the length PQ.
Draw a line segment of length 7.5 cm and divide it in the ratio 1:3.
Draw a line segment of length 7 cm and divide it in the ratio 5 : 3.
Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]