English

If a (20, 10), B(0, 20) Are Given, Find the Coordinates of the Points Which Divide Segment Ab into Five Congruent Parts. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If A (20, 10), B(0, 20) are given, find the coordinates of the points which divide segment AB into five congruent parts.

Sum

Solution

Let the points \[P\left( x_1 , y_1 \right), Q\left( x_2 , y_2 \right), R\left( x_3 , y_3 \right) \text { and } S\left( x_4 , y_4 \right)\] be the points which divide the line segment AB into 5 equal parts.

\[\frac{AP}{PB} = \frac{AP}{PQ + QR + RS} = \frac{AP}{4AP} = \frac{1}{4}\]

\[x_1 = \left( \frac{1 \times 0 + 4 \times 20}{1 + 4} \right) = 16\]

\[ y_1 = \left( \frac{1 \times 20 + 4 \times 10}{1 + 4} \right) = 12\]

\[P\left( x_1 , y_1 \right) = \left( 16, 12 \right)\]

\[\frac{PQ}{QB} = \frac{PQ}{QR + RS + SB} = \frac{PQ}{PQ + PQ + PQ} = \frac{PQ}{3PQ} = \frac{1}{3}\]

\[x_2 = \left( \frac{1 \times 0 + 3 \times 16}{1 + 3} \right) = 12\]

\[ y_2 = \left( \frac{1 \times 20 + 3 \times 12}{1 + 3} \right) = 14\]

\[Q\left( x_2 , y_2 \right) = \left( 12, 14 \right)\]

\[\frac{QR}{RB} = \frac{QR}{RS + SB} = \frac{QR}{QR + QR} = \frac{QR}{2QR} = \frac{1}{2}\]

\[x_3 = \left( \frac{1 \times 0 + 2 \times 12}{1 + 2} \right) = 8\]

\[ y_3 = \left( \frac{1 \times 20 + 2 \times 14}{1 + 2} \right) = 16\]

\[R\left( x_3 , y_3 \right) = \left( 8, 16 \right)\]

S is the midpoint of RB so, using the midpoint formula

\[x_4 = \frac{8 + 0}{2} = 4\]

\[ y_4 = \frac{16 + 20}{2} = 18\]

\[S\left( x_4 , y_4 \right) = \left( 4, 18 \right)\]

So, the points 

\[P\left( x_1 , y_1 \right) = \left( 16, 12 \right)\]

\[ Q\left( x_2 , y_2 \right) = \left( 12, 14 \right)\]

\[R\left( x_3 , y_3 \right) = \left( 8, 16 \right)\]

\[S\left( x_4 , y_4 \right) = \left( 4, 18 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Co-ordinate Geometry - Practice Set 5.2 [Page 116]

RELATED QUESTIONS

Construct a triangle ABC with BC = 7 cm, ∠B = 60° and AB = 6 cm. Construct another triangle whose sides are `3/4` times the corresponding sides of ∆ABC.


Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are `2/3` of the corresponding sides of the first triangle. Give the justification of the construction.

 


Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are `7/5` of the corresponding sides of the first triangle. Give the justification of the construction.


Draw a triangle ABC with side BC = 7 cm, ∠B = 45°, ∠A = 105°. Then, construct a triangle whose sides are `4/3 `times the corresponding side of ΔABC. Give the justification of the construction.


Draw a right triangle in which the sides (other than the hypotenuse) are of lengths 4 cm and 3 cm. Now construct another triangle whose sides are `3/5` times the corresponding sides of the given triangle.


Determine a point which divides a line segment of length 12 cm internally in the ratio 2 : 3 Also, justify your construction.


Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also, justify your construction.


Draw a right triangle ABC in which AC = AB = 4.5 cm and ∠A = 90°. Draw a triangle similar to ΔABC with its sides equal to (5/4)th of the corresponding sides of ΔABC.


Draw a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm. Then construct another triangle whose sides are 5/3th times the corresponding sides of the given triangle.


Construct a ΔABC in which AB = 5 cm. ∠B = 60° altitude CD = 3cm. Construct a ΔAQR similar to ΔABC such that side ΔAQR is 1.5 times that of the corresponding sides of ΔACB.


Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are 3/2 times the corresponding sides of the isosceles triangle.


Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm, ∠A = 60° with scale factor 4 : 5.


Construct the circumcircle and incircle of an equilateral ∆XYZ with side 6.5 cm and centre O. Find the ratio of the radii of incircle and circumcircle.


Draw a ∆ABC in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Then construct another triangle whose sides are\[\frac{3}{5}\]  of the corresponding sides of ∆ABC ?


Draw a triangle ABC with side BC = 6 cm, ∠C = 30° and ∠A = 105°. Then construct another triangle whose sides are `2/3` times the corresponding sides of ΔABC.

 


∆PQR ~ ∆LTR. In ∆PQR, PQ = 4.2 cm, QR = 5.4 cm, PR = 4.8 cm. Construct ∆PQR and ∆LTR, such that `"PQ"/"LT" = 3/4`.


Given A(4, –3), B(8, 5). Find the coordinates of the point that divides segment AB in the ratio 3 : 1.


The line segment AB is divided into five congruent parts at P, Q, R and S such that A–P–Q–R–S–B. If point Q(12, 14) and S(4, 18) are given find the coordinates of A, P, R, B.


Choose the correct alternative:

ΔPQR ~ ΔABC, `"PR"/"AC" = 5/7`, then


∆ABC ~ ∆PBQ. In ∆ABC, AB = 3 cm, ∠B = 90°, BC = 4 cm. Ratio of the corresponding sides of two triangles is 7 : 4. Then construct ∆ABC and ∆PBQ


ΔAMT ~ ΔAHE. In ΔAMT, AM = 6.3 cm, ∠MAT = 120°, AT = 4.9 cm, `"AM"/"HA" = 7/5`, then construct ΔAMT and ΔAHE


ΔRHP ~ ΔNED, In ΔNED, NE = 7 cm. ∠D = 30°, ∠N = 20°, `"HP"/"ED" = 4/5`, then construct ΔRHP and ∆NED


Point P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1. If P lies on the line x - y + 2 = 0, then value of k is ______.


To divide a line segment AB in the ratio p : q (p, q are positive integers), draw a ray AX so that ∠BAX is an acute angle and then mark points on ray AX at equal distances such that the minimum number of these points is ______.


To construct a triangle similar to a given ΔABC with its sides `8/5` of the corresponding sides of ΔABC draw a ray BX such that ∠CBX is an acute angle and X is on the opposite side of A with respect to BC. Then minimum number of points to be located at equal distances on ray BX is ______.


By geometrical construction, it is possible to divide a line segment in the ratio ______.


A triangle ABC is such that BC = 6cm, AB = 4cm and AC = 5cm. For the triangle similar to this triangle with its sides equal to `3/4`th of the corresponding sides of ΔABC, correct figure is?


If I ask you to construct ΔPQR ~ ΔABC exactly (when we say exactly, we mean the exact relative positions of the triangles) as given in the figure, (Assuming I give you the dimensions of ΔABC and the Scale Factor for ΔPQR) what additional information would you ask for?


To divide a line segment, the ratio of division must be ______.


Draw a right triangle ABC in which BC = 12 cm, AB = 5 cm and ∠B = 90°. Construct a triangle similar to it and of scale factor `2/3`. Is the new triangle also a right triangle?


Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to it and of scale factor `5/3`.


Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ∠ABC = 60°. Construct a triangle similar to ∆ABC with scale factor `5/7`. Justify the construction.


Draw a triangle ABC in which AB = 4 cm, BC = 6 cm and AC = 9 cm. Construct a triangle similar to ∆ABC with scale factor `3/2`. Justify the construction. Are the two triangles congruent? Note that all the three angles and two sides of the two triangles are equal.


Draw a line segment AB of length 6 cm and mark a point X on it such that AX = `4/5` AB. [Use a scale and compass]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×