English

If ∆Abc is an Equilateral Triangle Such that Ad ⊥ Bc, Then Ad2 = (A) 3 2 D C 2 (B) 2 Dc2 (C) 3 Cd2 (D) 4 Dc2 - Mathematics

Advertisements
Advertisements

Question

If ∆ABC is an equilateral triangle such that AD ⊥ BC, then AD2 =

 

Options

  • \[\frac{3}{2} {DC}^2\]
  • 2 DC2

  • 3 CD2

  • 4 DC2

MCQ

Solution

Given: In an equilateral ΔABC, `AD ⊥ BC`.

Since `AD ⊥ BC`., BD = CD = \[\frac{BC}{2}\]

Applying Pythagoras theorem,

In ΔADC

`AC^2+AD^2+DC^2`

`BC^2=AD^2+DC^2`(Since AC=BC)

`(2DC)^2=AD^2+DC^2`(Since BC=2DC)

`4DC^2=AD^2+DC^2`

`3DC^2=AD^2`

`3DC^2=AD^2`

We got the result as `c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.10 [Page 132]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.10 | Q 14 | Page 132

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×