English

If the frequency of incident light falling on a photosensitive material is doubled, then the kinetic energy of the emitted photoelectron will be ______. - Physics

Advertisements
Advertisements

Question

If the frequency of incident light falling on a photosensitive material is doubled, then the kinetic energy of the emitted photoelectron will be ______.

Options

  • same as its initial value

  • two times its initial value

  • more than two times its initial value

  • less than two times its initial value

MCQ
Fill in the Blanks

Solution

If the frequency of incident light falling on a photosensitive material is doubled, then the kinetic energy of the emitted photoelectron will be more than two times its initial value

Explanation:

E = W0 + Kmax 

⇒ Kmax = E − W0

= hv − W0

⇒ K1 = hv − W0 and

K2 = 2hv − W0

⇒ K2 > 2K1

shaalaa.com
The Photoelectric Effect
  Is there an error in this question or solution?
2014-2015 (March)

RELATED QUESTIONS

Explain the inverse linear dependence of stopping potential on the incident wavelength in a photoelectric effect experiment.


Using the values of work function given in the following table, tell which metal will require the highest frequency of incident radiation to generate photocurrent.

Typical values of work function for some common metals

Metal Work function (in eV)
Potassium 2.3
Sodium 2.4
Calcium 2.9
Zinc 3.6
Silver 4.3
Aluminium 4.3
Tungsten 4.5
Copper 4.7
Nickel 5.0
Gold 5.1

Radiation of wavelength 4500 Å is incident on a metal having work function 2.0 eV. Due to the presence of a magnetic field B, the most energetic photoelectrons emitted in a direction perpendicular to the field move along a circular path of radius 20 cm. What is the value of the magnetic field B?


Given the following data for incident wavelength and the stopping potential obtained from an experiment on the photoelectric effect, estimate the value of Planck's constant and the work function of the cathode material. What is the threshold frequency and corresponding wavelength? What is the most likely metal used for emitter?

Incident wavelength (in Å) 2536 3650
Stopping potential
(in V)
1.95 0.5

The energy of a photon is 2 eV. Find its frequency and wavelength.  


State Einstein’s photoelectric equation. Explain all characteristics of the photoelectric effect, on the basis of Einstein’s photoelectric equation.  


The maximum velocity of the photoelectron emitted by the metal surface is v. Charge and the mass of the photoelectron is denoted by e and m, respectively. The stopping potential in volt is ______.


The maximum velocity of photoelectron emitted is 4.8 m/s. If the e/m ratio of the electron is 1.76 × 1011 C/kg, then stopping potential is given by ______ 


The kinetic energy of the most energetic photoelectron emitted from a metal surface is doubled when the wavelength of the incident radiation is reduced from λ1 to λ2. The work function of the metal is ______


The following graph shows the stopping potential V0 versus frequency v for photoelectric emission from two metals A and B. The slope of each of the lines gives ______

 


Photoelectrons emitted from a metallic surface are initially ____________.


Light of wavelength `lambda` strikes a photo-sensitive surface and electrons are ejected with kinetic energy E. If the kinetic energy is to be increased to 2E, the wavelength must be changed to `lambda'` where ____________.


In photoelectric effect, for a light of different intensities but of same frequency, the stopping potential for a given metal is ____________.


In photoelectric effect, graph of saturation current versus frequency of light is plotted. The nature of the graph will be ____________.


When wavelength of incident radiation on the metal surface is reduced from 'λ1' to 'λ2', the kinetic energy of emitted photoelectrons is tripled. The work function of the metal is ______.
(h = Planck's constant, c =velocity of light)


Photoelectrons are emitted from a photosensitive surface for the light of wavelengths λ1 = 360 nm and λ2 = 600 nm. What is the ratio of work functions for lights of wavelength 'λ1' to 'λ2'?


The radiations of energies 1 eV and 2.5 eV are incident on a metal surface having work function 0.5 eV. The ratio of the maximum velocities of the emitted photo-electrons is ____________.


A light of wavelength '`lambda`' and intensity 'I' falls on photosensitive material. If 'N' photoelectrons are emitted, each with kinetic energy E, then ____________.


When light of wavelength '`lambda`' is incident on photosensitive surface, photons of power 'P' are emitted. The number of photons (n) emitted in 't' second is (h = Planck's constant, c = velocity of light in vacuum) ____________.


The ratio of slopes m1: ro2 of the lines given in the following graphs is, ______.


Photoelectrons are observed to just emit out of a material surface when the light of 620 nm falls on it with the intensity of 100 W m-2. If the light of wavelength 400 nm is incident on the same material with an intensity of 1 W m-2, what would be the minimum reverse potential needed to stop the outflow of the electrons?


The wavelength of light incident on a metal surface is reduced from 300 nm to 200 nm (both are less than threshold wavelength). What is the change in the stopping potential for photoelectrons emitted from the surface will be ______ V. (Take h = 6.6 × 10-34 J-s)


We wish to observe an object which is 2.5Å in size. The minimum energy photon that can be used ______.


For a given photosensitive material and frequency (> threshold frequency) of incident radiation, the photoelectric current varies with the intensity of incident light as:


The following graphs show the variation of stopping potential corresponding to the frequency of incident radiation (ν) for a given metal. The correct variation is shown in graph [ν0 = threshold frequency].

(A)

(B)

(C)

(D)


Light of two different frequencies whose photons have energies 1.3 eV and 2.8 eV respectively, successfully illuminate a metallic surface whose work function is 0.8 eV. The ratio of maximum speeds of emitted electrons will be ______.


Photoelectric emission is observed from a metallic surface for frequencies ν1 and ν2 of the incident light rays (ν1 > ν2). If the ratio of the maximum value of the kinetic energy of the photoelectrons emitted in the first case to that in the second case is 2 : K, then the threshold frequency of the metallic surface is ______.


Explain the failure of wave theory of light to account for the observations from experiments on photoelectric effect.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×