Advertisements
Advertisements
Question
If y= cos (msin_1 x).Prove that `(1-x^2)y_n+2-(2n+1)xy_(n+1)+(m^2-n^2)y_n=0`
Solution
`y = cos(msin^-1x)`
Differentiating w.r.t. ‘x’, y1 = `-sin (msin_1x).m.1/sqrt(1-x^2)`
∴ `sqrt(1-x^2.y_1)=- msin(msin^-1x)`
On Squaring, `(1-x^2)y_1^2=m^2 sin^2 (msin^-1x)`
∴ `(1-x)^2 y_1^2=m^2[1-cos^2(msin_1x)]`
∴ `(1-x^2)y_1^2=m^2[1-y^2]` (From 1)
Again differentiating w.r.t. 'x',
`(1-x^2)2y_1y_2+y_1^2(-2x)=m^2(0-2yy_1)`
∴ `(1-x^2)y_1-xy_1=-m^2y` (Dividing by 2y1)
Applying Leibnitz theorem,` {y_n=u_nv+nu_(n-1)v_1+^nC_2u_(n-2)v_2+^nC_3u_(n-3)v_3+........}`
`[(1-x^2)y_(n+2)+n(-2x)y_(n+1)+n(n-1)/(2!)]-[xy_n+1+ny_n]=-m^2y_n`
∴` (1-x^2)y_(n+2)+n(-2x)y_n+1+(n(n-1))/(2!)-xy_(n+1)-ny_n+m^2y_n=0`
∴` (1-x^2)y_n+2-xy_n(2n+1)+(-n^2+n-n+m^2)y_n=0`
∴ `(1-x^2)y_(n+2)-(2n+1)xy_n+1+(m^2-n^2)y_n=0`
APPEARS IN
RELATED QUESTIONS
Show that `sin(e^x-1)=x^1+x^2/2-(5x^4)/24+`...................
Using Newton Raphson method solve 3x – cosx – 1 = 0. Correct upto 3 decimal places.
Show that xcosecx = `1+x^2/6+(7x^4)/360+......`
If coshx = secθ prove that (i) x = log(secθ+tanθ). (ii) `θ=pi/2tan^-1(e^-x)`
Prove that `cos^-1tanh(log x)+ = π – 2(x-x^3/3+x^5/5.........)`
If` y= e^2x sin x/2 cos x/2 sin3x. "find" y_n`
Evaluate `Lim _(x→0) (cot x)^sinx.`
Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`
`"If" sin^4θcos^3θ = acosθ + bcos3θ + ccos5θ + dcos7θ "then find" a,b,c,d.`
Expand sec x by McLaurin’s theorem considering up to x4 term.