English

In ∆ABC, ∠A = 60°. Prove that BC2 = AB2 + AC2 − AB . AC. - Mathematics

Advertisements
Advertisements

Question

In ∆ABC, ∠A = 60°. Prove that BC2 = AB2 + AC2 − AB . AC.

Sum

Solution

In ΔABC, in which A is an acute angle with 60°.

`sin 60^o = (CD)/(AC)=sqrt3/2`

`⇒ CD = sqrt3/2AC`.................(1)

`cose 60^o = (AD)/(AC)=1/2`

`⇒ AD = 1/2 AC`

Now apply Pythagoras' theorem in triangle BCD

`BC^2=CD^2+BD^2`

`= CD^2 +(AB-AD)^2`

`= (sqrt3/2AC)^2+AB^2+(1/2AC)^2-2AB1/2AC`

`=AC^2+AB^2-AB.AC`

Hence `BC^2=AB^2+AC^2-AB.AC`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.8 [Page 127]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.8 | Q 27 | Page 127

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×