English

In an Isosceles Triangle Abc, the Base Ab is Produced Both the Ways to P and Q Such that Ap × Bq = Ac2. Prove that δApc ~ δBcq. - Mathematics

Advertisements
Advertisements

Question

In an isosceles ΔABC, the base AB is produced both the ways to P and Q such that AP × BQ = AC2. Prove that ΔAPC ~ ΔBCQ.

Solution

Given: In ΔABC, CA = CB and AP × BQ = AC2

To prove: ΔAPC ~ ΔBCQ

Proof:

AP × BQ = AC2                     [Given]

⇒ AP × BQ = AC × AC

⇒ AP × BQ = AC × BC               [AC = BC given]

`rArr"AP"/"BC"="AC"/"BQ"`              ......(i)

Since, CA = CB [Given]

Then, ∠CAB = ∠CBA                      …(ii) [Opposite angles to equal sides]

Now, ∠CAB + ∠CAP = 180°               …(iii) [Linear pair of angles]

And, ∠CBA + ∠CBQ = 180°          …(iv) [Linear pair of angles]

Compare equation (ii) (iii) & (iv)

∠CAP = ∠CBQ                         …(v)

In ΔAPC and ΔBCQ

∠CAP = ∠CBQ                          [From (v)]

`"AP"/"BC"="AC"/"BQ"`           [From (i)]

Then, ΔAPC~ΔBCQ                  [By SAS similarity]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.5 [Page 75]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.5 | Q 20 | Page 75

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×