English

In Figure Below, If Ab ⊥ Bc, Dc ⊥ Bc and De ⊥ Ac, Prove that δ Ced ~ Abc. - Mathematics

Advertisements
Advertisements

Question

In Figure below, if AB ⊥ BC, DC ⊥ BC and DE ⊥ AC, Prove that Δ CED ~ ABC.

Sum

Solution

Given: AB ⊥ BC, DC ⊥ BC and DE ⊥ AC

To prove: ΔCED ~ ΔABC

Proof:

∠BAC + ∠BCA = 90°                  …(i) [By angle sum property]

And, ∠BCA + ∠ECD = 90°             …(ii) [DC ⊥ BC given]

Compare equation (i) and (ii)

∠BAC = ∠ECD                           …(iii)

In ΔCED and ΔABC

∠CED = ∠ABC                        [Each 90°]

∠ECD = ∠BAC                         [From (iii)]

Then, ΔCED ~ ΔABC               [By AA similarity]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.5

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.5 | Q 19

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×