Advertisements
Advertisements
Question
In the given figure, if O is the circumcentre of ∠ABC, then find the value of ∠OBC + ∠BAC.
Solution
Since, O is the circumcentre of \[\bigtriangleup ABC\], So, O would be centre of the circle passing through points A, B and C.
As OA = OB (Radii of the same circle)
\[\therefore \angle OAB = \angle OBA \left( \text{ Angle opposite to equal sides are equal } \right)\]
\[\text{ or } , \angle BAC = \angle OBA\]
\[\text{ From } \left( 1 \right)\]
\[\angle BAC + \angle OBC = 90°\]
APPEARS IN
RELATED QUESTIONS
If O is the centre of the circle, find the value of x in the following figure:
If O is the centre of the circle, find the value of x in the following figure
If O is the centre of the circle, find the value of x in the following figure
If O is the centre of the circle, find the value of x in the following figures.
In the given figure, if ∠ACB = 40°, ∠DPB = 120°, find ∠CBD.
Prove that the angle in a segment shorter than a semicircle is greater than a right angle.
In a circle, the major arc is 3 times the minor arc. The corresponding central angles and the degree measures of two arcs are
If arcs AXB and CYD of a circle are congruent, find the ratio of AB and CD.
In the following figure, AB and CD are two chords of a circle intersecting each other at point E. Prove that ∠AEC = `1/2` (Angle subtended by arc CXA at centre + angle subtended by arc DYB at the centre).
A circle has radius `sqrt(2)` cm. It is divided into two segments by a chord of length 2 cm. Prove that the angle subtended by the chord at a point in major segment is 45°.