Advertisements
Advertisements
Question
In ΔPQR, PS is a median. T is the mid-point of SR and M is the mid-point of PT. Prove that: ΔPMR =
Solution
Area(ΔPQR) = area(ΔPQS) + area(ΔPSR) ....(i)
Since PS is the median of ΔPQR and median divides a triangle into two triangles of equal area.
Therefore, area(ΔPQS) = area(ΔPSR)
Substituting in (i)
Area(ΔPQR) = area(ΔPSR) + area(ΔPSR)
Area(ΔPQR) = 2area(ΔPSR) .........(iii)
Area(ΔPSR) = area(ΔPST) + area(ΔPTR) .....(iv)
Since PT is the median of ΔPSR and median divides a triangle into triangles of equal area.
Therefore, area(ΔPST) = area(ΔPTR) .....(v)
Substituting in (v)
Area(ΔPSR) = 2area(ΔPTR) ........(vi)
Substituting in (iii)
Area(ΔPQR) = 2 x 2area(ΔPTR)
Area(ΔPQR) = 4area(ΔPTR) .........(vii)
Area(ΔPQR) = area(ΔPMR) + area(ΔMTR) .....(viii)
Since MR is the median of ΔPTR and median divides a triangle into two triangles of equal area.
Therefore, area(ΔPMR) = area(ΔMTR) ....(ix)
Substituting in (viii)
Area(ΔPQR) = 4 x 2area(ΔPMR)
Area(ΔPQR) = 8 x area(ΔPMR)
area(ΔPMR) =
APPEARS IN
RELATED QUESTIONS
SN and QM are perpendiculars to the diagonal PR of parallelogram PQRS.
Prove that:
(i) ΔSNR ≅ ΔQMP
(ii) SN = QM
ABCD is a quadrilateral P, Q, R and S are the mid-points of AB, BC, CD and AD. Prove that PQRS is a parallelogram.
Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to each of the parallel sides, and is equal to half the difference of these sides.
In a parallelogram PQRS, M and N are the midpoints of the opposite sides PQ and RS respectively. Prove that
PMRN is a parallelogram.
ABCD is a trapezium in which side AB is parallel to side DC. P is the mid-point of side AD. IF Q is a point on the Side BC such that the segment PQ is parallel to DC, prove that PQ =
In the given figure, PQRS is a parallelogram in which PA = AB = Prove that: SA ‖ QB and SA = QB.
In the given figure, PQRS is a parallelogram in which PA = AB = Prove that: SAQB is a parallelogram.
In the given figure, PQRS is a trapezium in which PQ ‖ SR and PS = QR. Prove that: ∠PSR = ∠QRS and ∠SPQ = ∠RQP
The diagonals AC and BC of a quadrilateral ABCD intersect at O. Prove that if BO = OD, then areas of ΔABC an ΔADC area equal.
In the figure, ABCD is a parallelogram and CP is parallel to DB. Prove that: Area of OBPC =