English

In a Quadrilateral Abcd, ∠B = 90°. If Ad2 = Ab2 + Bc2 + Cd2 Then Prove that ∠Acd = 90°. - Mathematics

Advertisements
Advertisements

Question

In a quadrilateral ABCD, ∠B = 90°. If AD2 = AB2 + BC2 + CD2 then prove that ∠ACD = 90°.

Sum

Solution

In quadrilateral ABCD, we have

∠B = 90°

So, `AC^2=AB^2+BC^2`   (Pythagoras theorem)

and

`AD^2=AB^2+BC^2+CD^2`   (Given)

So,

`AD^2=AB62+BC^2+CD^2`

`AD^2=AC^2+CD^2`

Hence, ∠ACD = 90°                   (Converse of Pythagoras theorem)

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.8 [Page 127]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 7 Triangles
Exercise 7.8 | Q 36 | Page 127

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×