Advertisements
Advertisements
Question
In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If ∠AOC = 80° and ∠CDE = 40°, find the number of degrees in ∠ABC.
Solution
In ΔBOC,
∠AOC = ∠OCB + ∠OBC
(Exterior angle of a Δ is equal to the sum of pair of interior opposite angles)
`=>` ∠OBC = 80° – 50° = 30° ...[∠AOC = 80°, given]
Hence, ∠ABC = 30°
APPEARS IN
RELATED QUESTIONS
In the given figure, AOC is a diameter and AC is parallel to ED. If ∠CBE = 64°, calculate ∠DEC.
In a cyclic-trapezium, the non-parallel sides are equal and the diagonals are also equal. Prove it.
In the given circle with diameter AB, find the value of x.
In the given figure, AB = AD = DC = PB and ∠DBC = x°. Determine, in terms of x :
- ∠ABD,
- ∠APB.
Hence or otherwise, prove that AP is parallel to DB.
In the figure, given below, AD = BC, ∠BAC = 30° and ∠CBD = 70°.
Find:
- ∠BCD
- ∠BCA
- ∠ABC
- ∠ADB
AB is a diameter of the circle APBR as shown in the figure. APQ and RBQ are straight lines. Find : ∠PBR
A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that :
`∠QPR = 90^circ - 1/2 ∠BAC`
In the given Figure. P is any point on the chord BC of a circle such that AB = AP. Prove that CP = CQ.
In the given below the figure, AB is parallel to DC, ∠BCD = 80° and ∠BAC = 25°, Find
(i) ∠CAD, (ii) ∠CBD, (iii) ∠ADC.
In the figure, AB = AC = CD, ∠ADC = 38°. Calculate: (i) ∠ ABC, (ii) ∠ BEC.