English

In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR. - Geometry Mathematics 2

Advertisements
Advertisements

Question

In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.

Sum

Solution

`{:("PM = 10 cm"), ("A(∆PQS) = 100 sq.cm"), ("A(∆QRS) = 110 sq.cm"):}   }"Given"`

Now,

In ∆PQS and ∆QRS,

seg QS is common base of ∆PQS and ∆QRS.

∴ `"A(∆PQS)"/"A(∆QRS)" = "PM"/"NR"`   ...(Triangles having equal base)

∴ `100/110 = 10/"NR"`

∴ `"NR" = (110 × 10)/100`

∴ NR = 11 cm

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Similarity - Problem Set 1 [Page 27]

APPEARS IN

RELATED QUESTIONS

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`


The ratio of the areas of two triangles with the common base is 14 : 9. Height of the larger triangle is 7 cm, then find the corresponding height of the smaller triangle.


In the following figure RP: PK= 3:2, then find the value of A(ΔTRP):A(ΔTPK).


The ratio of the areas of two triangles with common base is 6:5. Height of the larger triangle of 9 cm, then find the corresponding height of the smaller triangle.


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.


 In trapezium PQRS, side PQ || side SR, AR = 5AP, AS = 5AQ then prove that, SR = 5PQ 

 

 


In trapezium ABCD, side AB || side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then Find OD. 


In ∆ABC, B – D – C and BD = 7, BC = 20, then find the following ratio.

`(A(∆ABD))/(A(∆ABC))`


In the given, seg BE ⊥ seg AB and seg BA ⊥ seg AD.

if BE = 6 and AD = 9 find `(A(Δ ABE))/(A(Δ BAD))`.


A roller of diameter 0.9 m and the length 1.8 m is used to press the ground. Find the area of the ground pressed by it in 500 revolutions.
`(pi=3.14)`


If ΔXYZ ~ ΔPQR then `"XY"/"PQ" = "YZ"/"QR"` = ?


Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides.


Ratio of corresponding sides of two similar triangles is 4:7, then find the ratio of their areas = ?


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


Prove that, The areas of two triangles with the same height are in proportion to their corresponding bases. To prove this theorem start as follows:

  1. Draw two triangles, give the names of all points, and show heights.
  2. Write 'Given' and 'To prove' from the figure drawn.

If ΔABC ∼ ΔDEF, length of side AB is 9 cm and length of side DE is 12 cm, then find the ratio of their corresponding areas.


In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity.


Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2 xx square xx square`

A(ΔPBC)  = `1/2 xx square xx square`

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx square xx square)/(1/2 xx square xx square)`

= `square/square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×