English

The Motion of a Simple Pendulum is Approximately Simple Harmonic for Small Angle Oscillations. for Larger Angles of Oscillation, a More Involved Analysis Shows That T Is Greater than `2pisqrt(1/G)` Think of a Qualitative Argument to Appreciate this Result. - Physics

Advertisements
Advertisements

Question

Answer the following questions:

The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that is greater than `2pisqrt(1/g)`  Think of a qualitative argument to appreciate this result.

Solution 1

In the case of a simple pendulum, the restoring force acting on the bob of the pendulum is given as:

F = –mg sinθ

Where,

= Restoring force

m = Mass of the bob

g = Acceleration due to gravity

θ = Angle of displacement

For small θ, sinθ = θ

For large θ, sinθ is greater than θ.

This decreases the effective value of g.

Hence, the time period increases as:

`T = 2pi sqrt(1/g)`

Where, l is the length of the simple pendulum

shaalaa.com

Solution 2

The restoring force for the bob of the pendulum is given by

`F = -mg sintheta`

if  `theta` is small thensin `theta = theta = y/l` `:. F = -(mg)/l y`

i.e the motion is simple harmonic and time period is` T = 2pi sqrt(1/g)`

Clearly, the above formula is obtained only if we apply the approximation `sin theta ~~ theta`

For large angles this approximation is not valid and T is greater than `2pi sqrt(1/g)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Oscillations - Exercises [Page 360]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 14 Oscillations
Exercises | Q 16.2 | Page 360

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

When the length of a simple pendulum is decreased by 20 cm, the period changes by 10%. Find the original length of the pendulum.


Answer the following questions:

A time period of a particle in SHM depends on the force constant and mass of the particle: `T = 2pi sqrt(m/k)` A simple pendulum executes SHM approximately. Why then is the time 

 


Answer the following questions:

A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?


A simple pendulum of length and having a bob of mass is suspended in a car. The car is moving on a circular track of radius with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?


A simple pendulum has a time period of T1 when on the earth's surface and T2 when taken to a height R above the earth's surface, where R is the radius of the earth. The value of `"T"_2 // "T"_1` is ______. 


A particle executing S.H.M. has a maximum speed of 30 cm/s and a maximum acceleration of 60 cm/s2. The period of oscillation is ______.


Find the time period of mass M when displaced from its equilibrium position and then released for the system shown in figure.


A body of mass m is situated in a potential field U(x) = U0 (1 – cos αx) when U0 and α are constants. Find the time period of small oscillations.


A tunnel is dug through the centre of the Earth. Show that a body of mass ‘m’ when dropped from rest from one end of the tunnel will execute simple harmonic motion.


A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). The amplitude is θ0. The string snaps at θ = θ0/2. Find the time taken by the bob to hit the ground. Also find distance from A where bob hits the ground. Assume θo to be small so that sin θo = θo and cos θo = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×